scholarly journals Effect of CD40 siRNA on Th17 cells and IL-17 and IL-23 in rats with experimental autoimmune myocarditis

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. 3504-3504
Author(s):  
B. Han ◽  
W. W. Yang ◽  
J. B. Wang ◽  
L. I. N. G. Gao
2020 ◽  
Author(s):  
Yuka Shiheido-Watanabe ◽  
Yasuhiro Maejima ◽  
Shun Nakagama ◽  
Natsuko Tamura ◽  
Takeshi Kasama ◽  
...  

Abstract Background There is a compelling need for establishing effective therapy for autoimmune myocarditis which primarily manifest as chest pain, heart failure or sudden death. Although our group have previously shown that dipeptidyl peptidase-4 (DPP-4) aggravates experimental autoimmune myocarditis (EAM), the detailed underlying mechanism remains to be unelucidated. Methods The effects of linagliptin, a xanthine-based dipeptidyl peptidase-4 inhibitor, on cardiac function were investigated by treating mouse EAM models and elucidated the role of DPP-4 on EAM using proteomic approaches. Results Immunohistochemical analyses demonstrated that the number of Th17 cells expressing high level of DPP-4 infiltrated to EAM myocardium was significantly attenuated by linagliptin treatment. MS/MS-based analyses demonstrated that DPP-4 binds to cathepsin-G in EAM hearts. DPP-4 also protects cathepsin-G activity by inhibiting the activity of SerpinA3N, a protease inhibitor that catalyzes cathepsin-G. The activity of cathepsin-G and the level of Angiotensin II were markedly elevated in EAM myocardium; this effect was reversed by linagliptin treatment. Furthermore, we found that linagliptin suppresses oxidative stress in EAM hearts. Conclusions DPP-4 physically interacts with cathepsin-G, which, in turn, suppresses SerpinA3N; this promotes angiotensin II accumulation in EAM hearts. Thus, DPP-4 derived from Th17 cells could aggravate cardiac dysfunction during EAM.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Yasuhiro Maejima ◽  
Yusuke Ito ◽  
Natsuko Tamura ◽  
Mitsuaki Isobe

Autoimmune myocarditis is the most common cause of heart failure among young adults and is a major precursor of dilated cardiomyopathy. We have shown that dipeptidyl peptidase-4 (DPP-4) plays a detrimental role in the pathogenesis of experimental autoimmune myocarditis (EAM) in mice. To elucidate how DPP-4 induces cardiac dysfunction in the EAM heart, mouse EAM models were given normal diet (CONT-group, N = 6), or a diet mixed with linagliptin, a potent DPP-4 inhibitor (83 mg/kg chow corresponding to around 3 mg/kg oral dosing) (LINA-group, N = 6). After 21-day of EAM induction, left ventricular ejection fraction was significantly higher in LINA-group than in CONT-group (72.6 ± 6.6%* vs. 60.1 ± 9.2%, * P < 0.05). Immunostaining demonstrated that the number of RORγt-positive Th17 cells, a subset of T-lymphocytes expressing high level of enzymatically active DPP-4, infiltrated to the EAM hearts was significantly smaller in LINA-group than in CONT-group (46.9 ± 2.4 RFU* vs. 116.8 ± 8.6 RFU, * P < 0.05). Consistently, the activity of DPP-4 in the EAM hearts was significantly lower in LINA-group than in CONT-group. Mass spectrometry analysis using lysates from the EAM hearts co-immunoprecipitated with Flag-DPP-4 recombinant protein demonstrated that DPP-4 interacts with cathepsin-G (CTSG), a plasma membrane-bound serine protease, in the EAM hearts. Co-immunoprecipitation assay verified the physical interaction between CTSG and DPP-4. The CTSG activity in the EAM hearts was markedly elevated, and treatment with linagliptin effectively suppressed the CTSG activity in the EAM hearts. We also found that DPP-4 significantly suppressed the activity of α1-antichymotrypsin, a protease which can catalyzes CTSG and is activated in response to EAM. Finally, we demonstrated that the level of angiotensin II, a major product catalyzed by CTSG, in the EAM hearts was significantly decreased in LINA-group than in CONT-group. Thus, these results suggest that DPP-4 expressing on the surface of Th17 cells physically interacts with CTSG, thereby enhancing CTSG activity by suppressing α1-antichymotrypsin, which, in turn, promoting the accumulation of angiotensin II, in the EAM hearts. In conclusion, DPP-4 derived from Th17 cells aggravates cardiac dysfunction during EAM.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Wang ◽  
Tianshu Liu ◽  
Xiongwen Chen ◽  
Qiaofeng Jin ◽  
Yihan Chen ◽  
...  

Myocarditis is a type of inflammatory cardiomyopathy that has no specific treatment. Accumulating evidence suggests that Th17 cells play a prominent role in the pathogenesis of myocarditis. Interleukin-(IL)-6-mediated signal transducer and activation of transcription 3 (STAT3) signaling is essential for Th17 cell differentiation and secretion of inflammatory cytokines. Bazedoxifene inhibits IL-6/STAT3 signaling in cancer cells, but its effect on the Th17 immune response induced by myocarditis remains unknown. Here we explore the effect of Bazedoxifene on Th17 immune response and cardiac inflammation in a mouse model of experimental autoimmune myocarditis, which has been used to mimic human inflammatory heart disease. After eliciting an immune response, we found Bazedoxifene ameliorated cardiac inflammatory injury and dysfunction. Th17 cells and related inflammatory factors in splenic CD4+ T cells at day 14 and in the heart at day 21 were increased, which were reduced by Bazedoxifene. Furthermore, Bazedoxifene could regulate autophagy induction in polarized Th17 cells. In conclusion, Bazedoxifene affected STAT3 signaling and prevented cardiac inflammation deterioration, so may provide a promising therapeutic strategy for the treatment of experimental autoimmune myocarditis (EAM).


2021 ◽  
Vol 22 (3) ◽  
pp. 1426
Author(s):  
Siqi Li ◽  
Kazuko Tajiri ◽  
Nobuyuki Murakoshi ◽  
DongZhu Xu ◽  
Saori Yonebayashi ◽  
...  

Programmed death ligand 2 (PD-L2) is the second ligand of programmed death 1 (PD-1) protein. In autoimmune myocarditis, the protective roles of PD-1 and its first ligand programmed death ligand 1 (PD-L1) have been well documented; however, the role of PD-L2 remains unknown. In this study, we report that PD-L2 deficiency exacerbates myocardial inflammation in mice with experimental autoimmune myocarditis (EAM). EAM was established in wild-type (WT) and PD-L2-deficient mice by immunization with murine cardiac myosin peptide. We found that PD-L2-deficient mice had more serious inflammatory infiltration in the heart and a significantly higher myocarditis severity score than WT mice. PD-L2-deficient dendritic cells (DCs) enhanced CD4+ T cell proliferation in the presence of T cell receptor and CD28 signaling. These data suggest that PD-L2 on DCs protects against autoreactive CD4+ T cell expansion and severe inflammation in mice with EAM.


2005 ◽  
Vol 11 (9) ◽  
pp. S284
Author(s):  
Hisahito Shinagawa ◽  
Takayuki Inomata ◽  
Hironari Nakano ◽  
Toshimi Koitabashi ◽  
Tsutomu Ohsaka ◽  
...  

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kazuko Tajiri ◽  
Kyoko Imanaka-Yoshida ◽  
Michiaki Hiroe ◽  
Nobutake Shimojo ◽  
Satoshi Sakai ◽  
...  

Introduction: Autoimmunity is considered to play an important role in the development of myocarditis and dilated cardiomyopathy. Recent reports have indicated that a subgroup of myocarditis patients may benefit from immune-targeted therapies. Suppressor of cytokine signaling1 (SOCS1) is an intracellular, cytokine-inducible protein that regulates the responses of immune cells to cytokines. We therefore hypothesized that overexpression of SOCS1 may inhibit the inflammation of myocarditis and cardiomyopathy. Methods and Results: Myocarditis was induced by subcutaneous immunization with cardiac specific peptides derived from α-myosin heavy chain in BALB/c mice on days 0 and 7. Plasmid DNA encoding SOCS1 (pSOCS1) was injected intraperitoneally into mice on days 0, 5 and 10. pSOCS1 treatment significantly decreased heart-to-body weight ratios and the number of infiltrating cells in the heart. Echocardiography showed preserved contractile function in pSOCS1-treated mice. Although autoimmune myocarditis is a CD4+ T cell-mediated disease, pSOCS1 treatment does not have a direct suppressive effect on autoreactive T-cell activation. The introduced pSOCS1 suppressed proinflammatory cytokine production and STAT1 phosphorylation in dendritic cells (DCs). In addition, the proliferative responses of autoreactive CD4+ T cells co-cultured with DCs from pSOCS1-treated mice were much weaker than those of cells cultured with DCs from control plasmid-injected mice. These results suggested that the inoculated pSOCS1 may have been transfected into DCs and impaired DC function in vivo. Conclusion: The administration of pSOCS1 protected mice from the development of experimental autoimmune myocarditis, which was mediated by the inhibition of DC function that in turn reduced the activation of autoreactive CD4+ T cells.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Filip Rolski ◽  
Marcin Czepiel ◽  
Kazimierz Weglarczyk ◽  
Maciej Siedlar ◽  
Gabriela Kania ◽  
...  

Background: Inflammatory heart diseases represent an important clinical problem, nonetheless data regarding activation of cardiac microvascular endothelial cells (MVECs) are limited. Aim: To examine influence of TNF-α and exosomes produced by heart-reactive CD4+ T lymphocytes on activation of cardiac MVECs. Methods: Experimental autoimmune myocarditis (EAM) was induced in wild-type (WT) and TNF-α-deficient (TNF-KO) mice. CD4+ T lymphocytes were isolated from EAM mice at day 21 and activated in vitro to produce conditioned medium and exosomes. Activation of MVECs was assessed by specific assays and leukocyte-to-endothelial adhesion was analysed under shear flow condition using the BioFlux microfluidic system. Results: TNF-KO mice showed lower prevalence of myocarditis when compared to WT mice (50% vs. 90%). Stimulation of MVECs with secretome of antigen-activated autoreactive T cells resulted in upregulation of adhesion molecules (ICAM-1, VCAM-1 and P-selectin), increased ROS and decreased NO production. Addition of anti-TNF-α neutralizing antibodies effectively blocked adhesion of leukocytes to MVECs activated with the conditioned medium. Endothelial activation and dysfunction induced by the conditioned medium were independent of TNF-α produced by T cells. Stimulation of MVECs with T cell-derived exosomes increased ROS and decreased levels of NO and eNOS activation, but exosomes neither increased expression of adhesion molecules in MVECs nor induced their ability to bind leukocytes. Conclusions: TNF-α promotes MVEC activation and EAM development. In this model, autoreactive T cells activate MVECs, and TNF-a produced by MVECs rather than T cells is essential in this process. On the other hand, endothelial dysfunction caused by T cells seems to be mediated mainly by exosomes.


Sign in / Sign up

Export Citation Format

Share Document