6089Increased vascular endothelial growth factor signalling following loss of endothelial endoglin leads to peripheral arteriovenous shunting and high output heart failure

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Tual-Chalot ◽  
M Garcia-Collado ◽  
R E Redgrave ◽  
E Singh ◽  
B Davison ◽  
...  

Abstract Background Endoglin is a co-receptor for TGFbeta/BMP9/10 signalling and ENG mutations lead to the vascular disorder hereditary haemorrhagic telangiectasia type I (HHT). Endoglin is also required for normal vascular development and angiogenesis, but little is known about endoglin's role in quiescent adult vascular endothelium. Purpose The goal of this present study is to determine how endoglin maintains vessel calibre in adult life to prevent AVM formation and thereby protect heart function. Methods To investigate this role, tamoxifen was administered to adult Cdh5(PAC)-CreERT2; Engfl/fl mice to generate endothelial-specific depletion of endoglin (Eng-iKOe). Cardiac magnetic resonance imaging, myography, vascular casting, microsphere injection, immunohistology, qPCR and aortic telemetry were used to evaluate cardiovascular changes after endoglin knockdown. Results Endothelial-specific loss of endoglin leads to an enlarged heart and cardiomyocyte hypertrophy within 5 weeks, progressing to high output heart failure (HOHF). In vivo aortic telemetry revealed significant loss of aortic pressure within a few days of endoglin depletion. Increased cardiac size and reduced cardiac afterload were confirmed by ventricular pressure loop analysis. As HOHF could result from arteriovenous malformations (AVMs), and these are found primarily in mucocutaneous and pulmonary tissues in HHT, we systematically screened for AVMs using microspheres and vascular casting. Although AVMs were absent in the majority of tissues, they were observed in the pelvic region and may account for the rapid increase in cardiac output. The pelvic cartilaginous symphysis is a noncapsulated cartilage with a naturally high endogenous expression of vascular endothelial growth factor (VEGF). Development of pelvic AVMs in this region of high VEGF expression occurred because loss of endoglin in endothelial cells leads to increased sensitivity to VEGF and a hyper-proliferative response. Finally, we found that inhibition of VEGFR2 was protective against AVMs development, enlargement of the heart and dilatation of the ventricles. Conclusion Our results showed the essential role of endoglin in the maintenance of adult cardio-vasculature through crosstalk with the VEGF signalling pathway. Acknowledgement/Funding British Heart Foundation, Cure HHT, The Swedish Research Council, The Cardiovascular Programme at Karolinska Institutet, The Swedish Cancer Society

2014 ◽  
Vol 306 (6) ◽  
pp. H789-H796 ◽  
Author(s):  
Tieqiang Zhao ◽  
Wenyuan Zhao ◽  
Weixin Meng ◽  
Chang Liu ◽  
Yuanjian Chen ◽  
...  

Vascular endothelial growth factor (VEGF)-C is a key mediator of lymphangiogenesis. Our recent study shows that VEGF-C/VEGF receptors (VEGFR)-3 are significantly increased in the infarcted rat myocardium, where VEGFR-3 is expressed not only in lymph ducts but also in myofibroblasts, indicating that VEGF-C has an unrevealed role in fibrogenesis during cardiac repair. The current study is to explore the regulation and molecular mechanisms of VEGF-C in fibrogenesis. The potential regulation of VEGF-C on myofibroblast differentiation/growth/migration, collagen degradation/synthesis, and transforming growth factor (TGF)-β and ERK pathways was detected in cultured cardiac myofibroblasts. Our results showed that VEGF-C significantly increased myofibroblast proliferation, migration, and type I/III collagen production. Matrix metalloproteinase (MMP)-2 and -9 were significantly elevated in the medium of VEGF-C-treated cells, coincident with increased tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Furthermore, VEGF-C activated the TGF-β1 pathway and ERK phosphorylation, which was significantly suppressed by TGF-β or ERK blockade. This is the first study indicating that in addition to lymphangiogenesis, VEGF-C is also involved in fibrogenesis through stimulation of myofibroblast proliferation, migration, and collagen synthesis, via activation of the TGF-β1 and ERK pathways.


Neurosurgery ◽  
2001 ◽  
Vol 49 (5) ◽  
pp. 1187-1195 ◽  
Author(s):  
John M. Abrahams ◽  
Mark S. Forman ◽  
M. Sean Grady ◽  
Scott L. Diamond

ABSTRACT OBJECTIVE We designed biodegradable polyglycolide coils (BPCs) and compared the histopathological response to the coils with that to platinum Guglielmi detachable coils (GDCs), after insertion into ligated common carotid arteries (CCAs) of adult rats. BPCs were also tested for use in local drug delivery. METHODS Segments (4-mm) of unmodified BPCs, unmodified GDCs, or BPCs coated with Type I bovine collagen and recombinant human vascular endothelial growth factor-165 (500 μg/ml) were inserted into ligated CCAs of adult rats for 14 days, and specimens were compared with contralateral CCA control specimens. RESULTS Arterial segments with BPCs exhibited substantially increased wall thickening, compared with GDCs (0.33 mm versus 0.10 mm, P < 0.005), which reduced the luminal diameter by 40%, relative to untreated contralateral control specimens (P < 0.05, n = 6). Arterial segments with BPCs also exhibited a marked reduction (P < 0.05, n = 6) in luminal area (0.72 ± 0.93 mm2), with marked cellular proliferation within the coil diameter, indicating coil integration. Arterial segments with collagen/recombinant human vascular endothelial growth factor-coated BPCs also exhibited a marked 2.9-fold increase (P < 0.005, n = 5) in wall thickness (0.29 ± 0.11 mm) and a 34% reduction in luminal diameter, compared with contralateral control vessels. There was marked proliferation of cells within the coil lumen of vessels treated with BPCs with collagen/recombinant human vascular endothelial growth factor. CONCLUSION In this feasibility study, BPCs enhanced the vascular response of CCA segments, compared with GDCs, and were also suitable for local protein delivery to the vessel lumen, under conditions of stasis and arterial pressurization of vascular cells.


Sign in / Sign up

Export Citation Format

Share Document