Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone

2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Michael E Van Nuland ◽  
Dylan P Smith ◽  
Jennifer M Bhatnagar ◽  
Artur Stefanski ◽  
Sarah E Hobbie ◽  
...  

ABSTRACT The response to global change by soil microbes is set to affect important ecosystem processes. These impacts could be most immediate in transitional zones, such as the temperate-boreal forest ecotone, yet previous work in these forests has primarily focused on specific subsets of microbial taxa. Here, we examined how bacterial and fungal communities respond to simulated above- and below-ground warming under realistic field conditions in closed and open canopy treatments in Minnesota, USA. Our results show that warming and canopy disturbance shifted bacterial and fungal community structure as dominant bacterial and fungal groups differed in the direction and intensity of their responses. Ectomycorrhizal and saprotrophic fungal communities with greater connectivity (higher prevalence of strongly interconnected taxa based on pairwise co-occurrence relationships) were more resistant to compositional change. Warming effects on soil enzymes involved in the hydrolytic and oxidative liberation of carbon from plant cell walls and nutrients from organic matter were most strongly linked to fungal community responses, although community structure–function relationships differed between fungal guilds. Collectively, these findings indicate that warming and disturbance will influence the composition and function of microbial communities in the temperate-boreal ecotone, and fungal responses are particularly important to understand for predicting future ecosystem functioning.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1113
Author(s):  
Xiaolong Lin ◽  
Zongmu Yao ◽  
Xinguang Wang ◽  
Shangqi Xu ◽  
Chunjie Tian ◽  
...  

Rice is a staple food for the world’s population. However, the straw produced by rice cultivation is not used sufficiently. Returning rice straw to the field is an effective way to help reduce labor and protect the soil. This study focused on the effect of water-covered depth with the freeze–thaw cycle on rice straw decomposition and the soil fungal community structure in a field in Northeast China. The field and controlled experiments were designed, and the fungal ITS1 region was tested by high-throughput sequencing for analyzing the fungal communities in this study. The results showed that water coverage with the freeze–thaw cycle promoted the decomposition of rice straw and influenced the fungal community structure; by analyzing the network of the fungal communities, it was found that the potential keystone taxa were Penicillium, Talaromyces, Fusarium, and Aspergillus in straw decomposition; and the strains with high beta-glucosidase, carboxymethyl cellulase, laccase, lignin peroxidase, and manganese peroxidase could also be isolated in the treated experiment. Furthermore, plant pathogenic fungi were found to decrease in the water-covered treatment. We hope that our results can help in rice production and straw return in practice.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approach. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. Total 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, Unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, Unclassified Ascomycota, Unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices (EMC) were significantly distinct from the soil microhabitat (Soil). Meanwhile, seven culture media that benefit for the growth of O. sinensis were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains isolated for rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora, Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera of total isolates. Conclusions The significantly distinction and overlap in fungal community structure between two approaches highlight that integration of approaches would generate more information than either of them. Our finding is the first investigation of fungal community structure of natural O. sinensis by two approachs, provide new insight into O. sinensis associated fungi, and support that microbiota of O. sinensis is an untapped source for novel bioactive metabolites discovery.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258227
Author(s):  
Tonny P. Tauro ◽  
Florence Mtambanengwe ◽  
Shensi Mpepereki ◽  
Paul Mapfumo

Recent advocacy for Integrated Soil Fertility Management (ISFM) in smallholder farming systems in east and southern Africa show substantial evidence of increased and sustained crop yields associated with enhanced soil productivity. However, the impact ISFM on soil fungi has received limited attention, yet fungi play key roles in crop growth. Following total soil DNA extraction with ZR soil microbe miniprep kit, illumina sequencing was used to, examine the fungal communities (ITS1F) under a maize crop following co-application of organic nutrient resources including Crotalaria juncea, cattle manure and maize stover with inorganic fertilizers at three-time periods (T1-December, T2-January, and T3-February) in Zimbabwe. Ninety-five fungal species were identified that were assigned to Ascomycota (>90%), Basidiomycota (7%) and Zygomycota (1%). At T1, Ascomycota and Basidiomycota were identified across treatments, with Ascomycota attaining > 93% frequency. Fungal succession was noted and involved reduction of Ascomycota coupled by increase in Basidiomycota under the different treatments. For example at T3, Basidiomycota increased to 34% while Ascomycota declined to 66% under manure but remained unchanged in other two organics. Pre-season mineral nitrogen (N) associated with the ‘Birch effect’ apparently influenced the fungal community structure at T1 while readily available fertilizer N was critical at T2 and T3. The low-quality maize stover promoted the presence of Exophiala sp SST 2011 and this was linked to N immobilization. The impact of N addition was more pronounced under medium (manure) to low-quality (maize stover) resources. Fungi required phosphorus (P) and N for survival while their proliferation was dependent on substrate availability linked to resource quality. Interactive-forward test indicated that soil available P and N were most influential (P < 0.05) factors shaping fungal communities. Co-application of medium to high quality organic and inorganic resources show promise as a sustainable entry point towards enhancing belowground fungal diversity critical in driving nutrient supply.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background: The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approaches. Results: A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices, Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. A total of 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, unclassified Ascomycota, unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices were significantly distinct from the soil microhabitat. Meanwhile, seven types of culture media were used to isolate culturable fungi at 16°C, resulted in 77 fungal strains isolated by rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora and Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera. Conclusions: The significantly differences and overlap in fungal community structure between two approaches highlight that the integration of high-throughput sequencing and culture-dependent approaches would generate more information. Our result reveal a comprehensive understanding of fungal community structure of natural O. sinensis, provide new insight into O. sinensis associated fungi, and support that microbiota of natural O. sinensis is an untapped source for novel bioactive metabolites discovery.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background: The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approaches. Results: A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. A total of 66 genera were identified from soil microhabitat (Soil), Inocybe, Archaeorhizomyces, unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, unclassified Ascomycota, unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices were significantly distinct from the soil microhabitat. Meanwhile, seven types of culture media were used to isolate culturable fungi at 16°C, resulted in 77 fungal strains isolated by rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora and Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera. Conclusions: The significantly differences and overlap in fungal community structure between two approaches highlight that the integration of high-throughput sequencing and culture-dependent approaches would generate more information. Our result reveal a comprehensive understanding of fungal community structure of natural O. sinensis, provide new insight into O. sinensis associated fungi, and support that microbiota of natural O. sinensis is an untapped source for novel bioactive metabolites discovery.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marie-Thérèse Mofini ◽  
Abdala G. Diedhiou ◽  
Marie Simonin ◽  
Donald Tchouomo Dondjou ◽  
Sarah Pignoly ◽  
...  

AbstractFungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shengnan Wang ◽  
Jiangke Cheng ◽  
Tong Li ◽  
Yuncheng Liao

AbstractFungal communities are considered to be critically important for crop health and soil fertility. However, our knowledge of the response of fungal community structure to the continuous cropping of flue-cured tobacco is limited, and the interaction of soil fungal communities under different cropping systems remains unclear. In this study, we comparatively investigated the fungal abundance, diversity, and community composition in the soils in which continuous cropping of flue-cured tobacco for 3 years (3ys), 5 years (5ys), and cropping for 1 year (CK) using quantitative polymerase chain reaction and high-throughput sequencing technology. The results revealed that continuous cropping of flue-cured tobacco changed the abundance of soil fungi, and caused a significant variation in fungal diversity. In particular, continuous cropping increased the relative abundance of Mortierellales, which can dissolve mineral phosphorus in soil. Unfortunately, continuous cropping also increased the risk of potential pathogens. Moreover, long-term continuous cropping had more complex and stabilize network. This study also indicated that available potassium and available phosphorous were the primary soil factors shifting the fungal community structure. These results suggested that several soil variables may affect fungal community structure. The continuous cropping of flue-cured tobacco significantly increased the abundance and diversity of soil fungal communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianqing Zheng ◽  
Ke Song ◽  
Shuangxi Li ◽  
Hanlin Zhang ◽  
Naling Bai ◽  
...  

AbstractThe diversity and community structure of soil fungi play an important role in crop production and ecosystem balance, especially in paddy-upland vegetable field systems. High-throughput sequencing was used to study changes in the soil fungal community structure and function in paddy-upland vegetable field systems. The results showed that compared with traditional planting, the diversity and community structure of soil fungi were changed by the combination of flooding and drought, the Shannon index increased by 11.07%, and the proportion of the dominant species, Mortierella, decreased by 22.74%. Soil available nitrogen, total phosphorus, available phosphorus, total nitrogen and organic matter played a leading role in the initial stage of the experiment, while the dominant factor changed to total potassium 3 years later and then to soil pH and water content 6 years later. FUNGuild analysis showed that the proportion of three independent trophic modes of soil fungi were increased by the combined flooded-drought model, and there were multiple interaction factors, For example, nutrient supply, pH and planting pattern. This study showed that soil fertility, crop yield and economic benefits were better than the traditional model after three years of planting and breeding. The longer the time, the better the effect.


2011 ◽  
Vol 101 (1) ◽  
pp. 52-57 ◽  
Author(s):  
H. Sudini ◽  
C. R. Arias ◽  
M. R. Liles ◽  
K. L. Bowen ◽  
R. N. Huettel

The present study focuses on determining soil fungal community structure in different peanut-cropping sequences by using a high-resolution DNA fingerprinting technique: ribosomal intergenic spacer analysis (RISA). This study was initiated to determine fungal community profiles in four peanut-cropping sequences (continuous peanut, 4 years of continuous bahiagrass followed by peanut, peanut-corn-cotton, and peanut-cotton rotations), with a special focus to evaluate whether the profiles under investigation may have also indicated microbial differences that could affect Aspergillus flavus populations. Results indicated 75% similarities among fungal communities from the same cropping sequences as well as with similar times of sampling. Polymerase chain reaction (PCR)-based detection of A. flavus directly from these soils was carried out using A. flavus-specific primers (FLA1 and FLA2) and also through quantitative estimation on A. flavus and A. parasiticus agar medium. Population levels of A. flavus in soil samples ranged from zero to 1.2 × 103 CFU g–1 of soil (based on culturable methods); however, the fungus was not detected with A. flavus-specific primers. The minimum threshold limit at which these aflatoxin-producing fungi could be detected from the total soil genomic DNA was determined through artificial inoculation of samples with 10-fold increases in concentrations. The results indicated that a minimum population density of 2.6 × 106 CFU g–1 of soil is required for PCR detection in our conditions. These results are useful in further determining the relative population levels of these fungi in peanut soils with other soil fungi. This is a new approach to understanding soil fungal communities and how they might change over time and under different rotation systems.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12309
Author(s):  
Bin Wang ◽  
Shaohua Chu ◽  
Xiaorui Liu ◽  
Dan Zhang ◽  
Xiaotong Chai ◽  
...  

Background Secondary salinized soil in greenhouses often contains excess nitrate. Inoculation of Bacillus megaterium NCT-2 with nitrate assimilation ability represents an attractive approach for soil remediation. However, the effects of NCT-2 on the structure and function of soil microbial communities have not been explored. Methods Greenhouse experiments were carried out to investigate changes in soil properties, Brassica chinensis L. growth, bacterial, and fungal community structure and function in response to NCT-2 inoculation. Results The NCT-2 inoculant significantly reduced the nitrate content in B. chinensis and inhibited the rebound of soil nitrate in the later stage. The shifts of bacterial community structure and function by NCT-2 was negligible, and a greater disturbance of soil fungal community structure and function was observed, for example the strong inhibitory effect on ectomycorrhizal fungi. These results indicated that the NCT-2 inoculant likely achieved the remediation effect in secondary salinized soil by shifting fungal community. The present findings add to the current understanding of microbial interactions in response to bacterial inoculation and can be of great significance for the application of NCT-2 inoculants in secondary salinized soil remediation.


Sign in / Sign up

Export Citation Format

Share Document