scholarly journals Homologous overexpression of NpDps2 and NpDps5 increases the tolerance for oxidative stress in the multicellular cyanobacterium Nostoc punctiforme

2018 ◽  
Vol 365 (18) ◽  
Author(s):  
Xin Li ◽  
Henna Mustila ◽  
Ann Magnuson ◽  
Karin Stensjö
2019 ◽  
Author(s):  
Christoph Howe ◽  
Vamsi K. Moparthi ◽  
Felix M. Ho ◽  
Karina Persson ◽  
Karin Stensjö

AbstractDps proteins (DNA-binding proteins from starved cells) have been found to detoxify H2O2. At their catalytic centers, the ferroxidase center (FOC), Dps proteins utilize Fe2+ to reduce H2O2 and therefore play an essential role in the protection against oxidative stress and maintaining iron homeostasis. Whereas most bacteria accommodate one or two Dps, there are five different Dps proteins in Nostoc punctiforme, a phototrophic and filamentous cyanobacterium. This uncommonly high number of Dps proteins implies a sophisticated machinery for maintaining complex iron homeostasis and for protection against oxidative stress. Functional analyses and structural information on cyanobacterial Dps proteins are rare, but essential for understanding the function of each of the NpDps proteins. In this study, we present the crystal structure of NpDps4 in its metal-free, iron- and zinc-bound forms. The FOC coordinates either two iron atoms or one zinc atom. Spectroscopic analyses revealed that NpDps4 could oxidize Fe2+ utilizing O2, but no evidence for its use of the oxidant H2O2 could be found. We identified Zn2+ to be an effective inhibitor of the O2-mediated Fe2+ oxidation in NpDps4. NpDps4 exhibits a FOC that is very different from canonical Dps, but structurally similar to the atypical one from DpsA of Thermosynechococcus elongatus. Sequence comparisons among Dps protein homologs to NpDps4 within the cyanobacterial phylum led us to classify a novel FOC class: the His-type FOC. The features of this special FOC have not been identified in Dps proteins from other bacterial phyla and it might be unique to cyanobacterial Dps proteins.


2014 ◽  
Vol 98 (8) ◽  
pp. 3809-3818 ◽  
Author(s):  
Lakshmipyari Devi Moirangthem ◽  
Sudeshna Bhattacharya ◽  
Karin Stensjö ◽  
Peter Lindblad ◽  
Jyotirmoy Bhattacharya

2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document