scholarly journals Homoeologous recombination is recurrent in the nascent synthetic allotetraploid Arachis ipaënsis × Arachis correntina4x and its derivatives

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Ye Chu ◽  
David Bertioli ◽  
Chandler M Levinson ◽  
H Thomas Stalker ◽  
C Corley Holbrook ◽  
...  

Abstract Genome instability in newly synthesized allotetraploids of peanut has breeding implications that have not been fully appreciated. Synthesis of wild species-derived neo-tetraploids offers the opportunity to broaden the gene pool of peanut; however, the dynamics among the newly merged genomes creates predictable and unpredictable variation. Selfed progenies from the neo-tetraploid Arachis ipaënsis × Arachis correntina (A. ipaënsis × A. correntina)4x and F1 hybrids and F2 progenies from crosses between A. hypogaea × [A. ipaënsis × A. correntina]4x were genotyped by the Axiom Arachis 48 K SNP array. Homoeologous recombination between the A. ipaënsis and A. correntina derived subgenomes was observed in the S0 generation. Among the S1 progenies, these recombined segments segregated and new events of homoeologous recombination emerged. The genomic regions undergoing homoeologous recombination segregated mostly disomically in the F2 progenies from A. hypogaea × [A. ipaënsis × A. correntina]4x crosses. New homoeologous recombination events also occurred in the F2 population, mostly found on chromosomes 03, 04, 05, and 06. From the breeding perspective, these phenomena offer both possibilities and perils; recombination between genomes increases genetic diversity, but genome instability could lead to instability of traits or even loss of viability within lineages.

2021 ◽  
Author(s):  
Daniela Quezada Martinez ◽  
Jun Zou ◽  
Wenshang Zhang ◽  
Jinling Meng ◽  
Jacqueline Batley ◽  
...  

In the Brassica genus we find both diploid species (one genome) and allotetraploid species (two different genomes) but no naturally occurring hexaploid species (three different genomes, AABBCC). Although hexaploids can be produced via human intervention, these neo-polyploids have quite unstable genomes and usually suffer from severe genome reshuffling. Whether these genome rearrangements continue in later generations and whether genomic arrangements follow similar, reproducible patterns between different lines is still unknown. We crossed Brassica hexaploids resulting from different species combinations to produce five F1 hybrids, and analyzed the karyotypes of the parents and the F1 hybrids, as well as allele segregation in a resulting test-cross population via molecular karyotyping using SNP array genotyping. Although some genomic regions were found to be more likely to be duplicated, deleted or rearranged, a consensus pattern was not shared between genotypes. Brassica hexaploids had a high tolerance for fixed structural rearrangements, but which rearrangements occur and become fixed over many generations does not seem to show either strong reproducibility or to indicate selection for stability. On average, we observed 10 de novo chromosome rearrangements contributed almost equally from both parents to the F1 hybrids. At the same time, the F1 hybrid meiosis produced on average 8.6 new rearrangements. Hence, the increased heterozygosity in the F1 hybrid did not significantly improve genome stability in our hexaploid hybrids, and might have had the opposite effect. However, hybridization between lineages was readily achieved and may be exploited for future genetics and breeding purposes.


Author(s):  
Dongying Gao ◽  
Ana C. G. Araujo ◽  
Eliza F. M. B. Nascimento ◽  
M. Carolina Chavarro ◽  
Han Xia ◽  
...  

AbstractIntrogression of desirable traits from wild relatives plays an important role in crop improvement, as wild species have important characters such as high resistance to pests and pathogens. However, use of wild peanut relatives is challenging because almost all wild species are diploid and sexually incompatible with cultivated peanut, which is tetraploid (AABB genome type; 2n = 4x = 40). To overcome the ploidy barrier, we used 2 wild species to make a tetraploid with the same allotetraploid genome composition as cultivated peanut. Crosses were made between 2 diploid wild species, Arachis valida Krapov. and W.C. Greg. (BB genome; 2n = 2x = 20) and Arachis stenosperma Krapov. and W.C. Greg. (AA genome; 2n = 2x = 20). Cuttings from the diploid F1 AB hybrid were treated with colchicine to induce chromosome doubling thus generating an induced allotetraploid. Chromosome counts confirmed polyploidy (AABB genome; 2n = 4x = 40). We named the new allotetraploid ValSten. Plants had well-developed fertile pollen, produced abundant seed and were sexually compatible with cultivated peanut. ValSten exhibits the same high resistance to early and late leaf spot and rust as its diploid parents. Notably, we observed morphological variations, including flower width and branch angles in the earliest generation (S0) of allotetraploids. A SNP array was used to genotype 47 S0 allotetraploids. The great majority of markers showed the additive allelic state from both parents (AABB). However, some loci were AAAA or BBBB, indicating homeologous recombination. ValSten provides a new, vigorous, highly fertile, disease resistant germplasm for peanut research and improvement.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493
Author(s):  
Salvatore Mastrangelo ◽  
Filippo Cendron ◽  
Gianluca Sottile ◽  
Giovanni Niero ◽  
Baldassare Portolano ◽  
...  

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.


2005 ◽  
Vol 53 (4) ◽  
pp. 793-802 ◽  
Author(s):  
M. Hasan ◽  
F. Seyis ◽  
A. G. Badani ◽  
J. Pons-Kühnemann ◽  
W. Friedt ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1400
Author(s):  
Xiao-Guang Sheng ◽  
Ferdinando Branca ◽  
Zhen-Qing Zhao ◽  
Jian-Sheng Wang ◽  
Hui-Fang Yu ◽  
...  

Black rot is a destructive disease that affects B. oleracea crops, causing significant losses to growers throughout the world. The purpose of this study was to screen out new sources resistant to Xanthomonas campestris pv. campestris race 4 (Xcc4) in 26 cauliflower and six related wild species, and to assess the inheritance of resistance. The results indicate that most of the tested accessions were susceptible or had intermediate resistance, except the Boc4601 (a cauliflower stable inbred line) and PI435896, UNICT5168, and UNICT5169 (wild accessions). Among them, UNICT5169 (Brassica montana) and PI435896 (Brassica balearica) showed the strongest resistance to Xcc4, with significantly lower disease index (DI), area of the infected part (AIP) and proportion of the infected part to the total leaf area (PTL) values. UNICT 5169 was selected as an Xcc4-resistant parent because of its relatively good cross seed-setting rate with cauliflower cultivars. F1 hybrids were successfully produced between this wild resistant accession (UNICT 5169) and one susceptible cauliflower breeding line (Boc3202-4), indicating the potential transferability of this resistance to cauliflower. The results of the symptoms severity evaluation of the F2 population indicate that Xcc4 resistance in UNICT5169 is a quantitative trait, which guides future resistance gene location and black rot resistance breeding.


Author(s):  
Sean Hoban ◽  
Gayle Volk ◽  
Kanin J. Routson ◽  
Christina Walters ◽  
Chris Richards

2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2021 ◽  
Vol 11 ◽  
Author(s):  
Matthew J. Rybin ◽  
Melina Ramic ◽  
Natalie R. Ricciardi ◽  
Philipp Kapranov ◽  
Claes Wahlestedt ◽  
...  

Genome instability is associated with myriad human diseases and is a well-known feature of both cancer and neurodegenerative disease. Until recently, the ability to assess DNA damage—the principal driver of genome instability—was limited to relatively imprecise methods or restricted to studying predefined genomic regions. Recently, new techniques for detecting DNA double strand breaks (DSBs) and single strand breaks (SSBs) with next-generation sequencing on a genome-wide scale with single nucleotide resolution have emerged. With these new tools, efforts are underway to define the “breakome” in normal aging and disease. Here, we compare the relative strengths and weaknesses of these technologies and their potential application to studying neurodegenerative diseases.


Author(s):  
V. S. Mandrusova ◽  
I. S. Gordej ◽  
O. M. Lyusikov ◽  
V. E. Shimko ◽  
I. A. Gordej

In this work, the genetic diversity of the modern gene pool of the winter rye (S. cereal L.) of the Republic of Belarus from 20 actual breeding samples was investigated using 15 microsatellite (SSR) markers to develop divergent crossing combinations in breeding for heterosis. It was shown that the formed set of SSR markers is highly effective – the informational content index (PIC) varied from 0.50 to 0.83 and averaged 0.72. The most effective microsatellite markers (SCM28, SCM43, SCM101 and SCM102) were identified and can be successfully used to study the genetic diversity of rye. It has been established that the modern gene pool of the winter rye of the Republic of Belarus is generally characterized by fairly wide genetic diversity (interpopulation variability) – all collection samples are characterized by a unique allelic composition of the studied microsatellite loci. Based on investigation results, a hierarchical clustering dendrogram was constructed, which made it possible to determine the most genetically divergent combinations of crosses. The information obtained can be used for the development of an effective scheme allowing to develop new varieties and hybrids in the practical breeding of rye for heterosis.


Sign in / Sign up

Export Citation Format

Share Document