scholarly journals Evolution of the autosomal chorion locus in Drosophila. I. General organization of the locus and sequence comparisons of genes s15 and s19 in evolutionary distant species.

Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 663-677
Author(s):  
J C Martínez-Cruzado ◽  
C Swimmer ◽  
M G Fenerjian ◽  
F C Kafatos

Abstract We have isolated clones corresponding to the autosomal chorion locus of Drosophila melanogaster, from two distantly (D. virilis and D. grimshawi) and one closely (D. subobscura) related species. In all the species the locus is unique within the genome and encompasses the same four chorion genes and an adjacent nonchorion gene, in the same order. In all species the locus specifically amplifies in the ovary, as in D. melanogaster. We present the nucleotide sequences of DNA segments that total 8.3 kb in length and include gene s15-1 from D. subobscura, D. virilis, and D. grimshawi as well as gene s19-1 from D. subobscura and D. grimshawi. They show clearly nonuniform rates of divergence, both within and outside the limits of the genes. Highlighted by a background of extensive sequence divergence elsewhere in the extragenic region, highly conserved elements are observed in the 5' flanking DNA and might represent regulatory elements.

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 753-762
Author(s):  
Günther E Roth ◽  
Sigrid Wattler ◽  
Hartmut Bornschein ◽  
Michael Lehmann ◽  
Günter Korge

Abstract The Drosophila melanogaster gene Sgs-1 belongs to the secretion protein genes, which are coordinately expressed in salivary glands of third instar larvae. Earlier analysis had implied that Sgs-1 is located at the 25B2-3 puff. We cloned Sgs-1 from a YAC covering 25B2-3. Despite using a variety of vectors and Escherichia coli strains, subcloning from the YAC led to deletions within the Sgs-1 coding region. Analysis of clonable and unclonable sequences revealed that Sgs-1 mainly consists of 48-bp tandem repeats encoding a threonine-rich protein. The Sgs-1 inserts from single λ clones are heterogeneous in length, indicating that repeats are eliminated. By analyzing the expression of Sgs-1/lacZ fusions in transgenic flies, cis-regulatory elements of Sgs-1 were mapped to lie within 1 kb upstream of the transcriptional start site. Band shift assays revealed binding sites for the transcription factor fork head (FKH) and the factor secretion enhancer binding protein 3 (SEBP3) at positions that are functionally relevant. FKH and SEBP3 have been shown previously to be involved in the regulation of Sgs-3 and Sgs-4. Comparison of the levels of steady state RNA and of the transcription rates for Sgs-1 and Sgs-1/lacZ reporter genes indicates that Sgs-1 RNA is 100-fold more stable than Sgs-1/lacZ RNA. This has implications for the model of how Sgs transcripts accumulate in late third instar larvae.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2005 ◽  
Vol 83 (2) ◽  
pp. 368-371 ◽  
Author(s):  
Mark J Fitzpatrick ◽  
Evelyn Szewczyk

Denticles are small projections on the underside of larval fruit flies that are used to grip the substrate while crawling. Previous studies have shown that (i) there is natural variation in denticle number and pattern between Drosophila melanogaster (Meigen, 1830) and several closely related species and (ii) mutations affecting denticle morphology have negative effects on locomotory performance. We hypothesized that there would be a correlation between denticle number and locomotory performance within populations of D. melanogaster. Despite finding considerable variation in denticle number, we found no correlation between denticle number and three measurements of larval locomotion: speed, acceleration, and absolute turning rate.


2009 ◽  
Vol 87 (7) ◽  
pp. 635-641 ◽  
Author(s):  
S. Havard ◽  
P. Eslin ◽  
G. Prévost ◽  
G. Doury

Unable to form cellular capsules around large foreign bodies, the species Drosophila subobscura Collin in Gordon, 1936 was previously shown devoid of lamellocytes, the capsule-forming hemocytes in Drosophila melanogaster Meigen, 1830. This unusual case of deficiency in encapsulation ability was remarkable enough to motivate further investigations in phylogenetically related species of the obscura group. Like D. subobscura, the species Drosophila azteca Sturtevant and Dobzhansky, 1936, Drosophila bifasciata Pomini, 1940, Drosophila guanche Monclus, 1976, Drosophila miranda Dobzhansky, 1935, Drosophila persimilis Dobzhansky and Epling, 1944, and Drosophila pseudoobcura Frovola and Astaurov, 1929 were found to be unable to encapsulate large foreign bodies and also to lack lamellocytes. Surprisingly, Drosophila affinis Sturtevant, 1916, Drosophila tolteca Patterson and Mainland, 1944, and Drosophila obscura Fallen, 1823 were capable of mounting cellular capsules, although their encapsulation abilities remained weak. These three species were free of lamellocytes but possessed small pools of never before described “atypical hemocytes” present in the hemolymph when capsules were formed.


2021 ◽  
Author(s):  
Noriyoshi Akiyama ◽  
Shoma Sato ◽  
Kentaro M. Tanaka ◽  
Takaomi Sakai ◽  
Aya Takahashi

AbstractThe spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns inDrosophilaare formed by the deposition of different pigments synthesized in the developing epidermis and the role ofcis-regulatory elements (CREs) of melanin biosynthesis pathway-related genes is well-characterized. These CREs typically exhibit modular arrangement in the regulatory region of the gene with each enhancer regulating a specific spatiotemporal expression of the gene. However, recent studies have suggested that multiple enhancers of a number of developmental genes as well as those ofyellow(involved in dark pigment synthesis) exhibit redundant activities. Here we report the redundant enhancer activities in thecis-regulatory region of another gene in the melanin biosynthesis pathway,ebony, in the developing epidermis ofDrosophila melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the endogenous primary epidermis enhancer (priEE) by genome editing. The effect of the priEE deletion on pigmentation and on the endogenous expression pattern of amCherry-taggedebonyallele was examined in the thoracic and abdominal segments. The expression level ofebonyin the priEE-deleted strains was similar to that of the control strain, indicating the presence of redundant enhancer activities that drive the broad expression ofebonyin the developing epidermis. Additionally, the priEE fragment contained a silencer that suppressesebonyexpression in the dorsal midline of the abdominal tergites, which is necessary for the development of the subgenusSophophora-specific dark pigmentation patterns along the midline. The endogenous expression pattern ofebonyin the priEE-deleted strains and the reporter assay examining the autonomous activity of the priEE fragment indicated that the silencer is involved in repressing the activities of both proximal and distant enhancers. These results suggest that multiple silencers are dispensable in the regulatory system of a relatively stable taxonomic character. The prevalence of other redundant enhancers and silencers in the genome can be investigated using a similar approach.Author summaryGenes are expressed at the right timing and place to give rise to diverse phenotypes. The spatiotemporal regulation is usually achieved through the coordinated activities of transcription-activating and transcription-repressing proteins that bind to the DNA sequences called enhancers and silencers, respectively, located near the target gene. Most studies identified the locations of enhancers by examining the ability of the sequence fragments to regulate the expression of fused reporters. Various short enhancers have been identified using this approach. This study employed an alternative approach in which the previously identified enhancer that regulates expression ofebony(a gene involved in body color formation) was deleted in a fruitfly,Drosophila melanogaster, using the genome-editing technique. The knockout of this enhancer did not affect the transcription level of the gene to a large extent. This indicated the presence of transcription-activating elements with redundant functions outside the deleted enhancer. Additionally, the transcription ofebonyat the midline of the abdomen, which is repressed in the normal flies, were derepressed in the enhancer-deleted flies, which indicated that the deleted enhancer fragment contained a silencer that negatively regulates multiple enhancer activities in a spatially restricted manner.


2009 ◽  
Vol 37 (4) ◽  
pp. 778-782 ◽  
Author(s):  
Macarena Toll-Riera ◽  
Robert Castelo ◽  
Nicolás Bellora ◽  
M. Mar Albà

Genomes contain a large number of genes that do not have recognizable homologues in other species. These genes, found in only one or a few closely related species, are known as orphan genes. Their limited distribution implies that many of them are probably involved in lineage-specific adaptive processes. One important question that has remained elusive to date is how orphan genes originate. It has been proposed that they might have arisen by gene duplication followed by a period of very rapid sequence divergence, which would have erased any traces of similarity to other evolutionarily related genes. However, this explanation does not seem plausible for genes lacking homologues in very closely related species. In the present article, we review recent efforts to identify the mechanisms of formation of primate orphan genes. These studies reveal an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 677-683 ◽  
Author(s):  
S. C. Lakhotia

The 93D locus in Drosophila melanogaster and the 93D-like loci in other species of Drosophila, collectively termed hsr ω (heat shock RNA omega) locus, display several unique and intriguing features: (i) developmental regulation and selective induction by several agents like benzamide, colchicine, thiamphenicol, vit-B6; (ii) functional conservation in the genus but a very rapid DNA base sequence divergence; (iii) in spite of the rapid DNA sequence divergence, a strong conservation of organization (a 5′ unique region and a 3′ long tandem repeat region) and the pattern of multiple ω transcripts in the genus; (iv) a general nontranslatability of all the three major species of ω transcripts (an ~ 10-kb ω1, a 2.0-kb ω2, and a 1.2-kb ω3 species) although some recent evidence favours translatability of a small open reading frame (~ 23 – 27 amino acid long) in the ω3 transcript; (v) dispensability of the hsr ω locus for heat shock protein synthesis but indispensability for viability of flies. The heat shock inducibility of the 93D locus of D. melanogaster is selectively repressed by (i) combination of heat shock with another inducer of 93D; (ii) rearing of larvae at 10 °C; (iii) heterozygous deficiency for the 93D region; and (iv) conditions that alter levels of beta-alanine. In all cases of repression of the 93D locus during heat shock, the 87A and 87C loci (the two duplicate loci harbouring multiple copies for hsp70 and the alpha–beta repeat sequences (at 87C)) develop unequal puffs. The hsr ω locus appears to be under a complex system of regulation involving autoregulation as well as regulation by other factors in the cell which possibly operate through different control elements on the locus.Key words: benzamide, colchicine, beta-alanine, hsr ω, heat shock puffs, Drosophila.


Sign in / Sign up

Export Citation Format

Share Document