Locomotion is not influenced by denticle number in larvae of the fruit fly Drosophila melanogaster

2005 ◽  
Vol 83 (2) ◽  
pp. 368-371 ◽  
Author(s):  
Mark J Fitzpatrick ◽  
Evelyn Szewczyk

Denticles are small projections on the underside of larval fruit flies that are used to grip the substrate while crawling. Previous studies have shown that (i) there is natural variation in denticle number and pattern between Drosophila melanogaster (Meigen, 1830) and several closely related species and (ii) mutations affecting denticle morphology have negative effects on locomotory performance. We hypothesized that there would be a correlation between denticle number and locomotory performance within populations of D. melanogaster. Despite finding considerable variation in denticle number, we found no correlation between denticle number and three measurements of larval locomotion: speed, acceleration, and absolute turning rate.

1967 ◽  
Vol 15 (3) ◽  
pp. 501 ◽  
Author(s):  
H Wolda

A number of samples from wild populations of the Queensland fruit fly, Dacus tryoni and D. neohumeralis, were studied. There is a considerable variation in the colour pattern on the humeral callus. This variation is continuous so that any criterion for distinguishing between "intermediates" and "good species" is purely arbitrary. It was found in areas where D. neohumeralis does not occur as well as in localities where it is very abundant. By whatever criterion one defines intermediates, there appears to be no relation between the frequency of such forms and the presence or absence of D. neohumeralis or with the relative proportions of the two species in the population. However, flies with only a very small yellow area on an otherwise brown humeral callus were found only in Cairns where D. neohumeralis is usually the most abundant species. A similar variation in humeral callus pattern was found in other related species, such as D. kraussi and D. halfordiae. It is concluded that the intermediate colour forms may not be hybrids between D. tryoni and D. neohumeralis but variants of D. tryoni and, possibly the darker forms from Cairns, of D. neohumeralis.


2016 ◽  
Vol 6 (10) ◽  
pp. 3283-3295 ◽  
Author(s):  
Victor Borges Rezende ◽  
Carlos Congrains ◽  
André Luís A. Lima ◽  
Emeline Boni Campanini ◽  
Aline Minali Nakamura ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Sofie De Groef ◽  
Tom Wilms ◽  
Séverine Balmand ◽  
Federica Calevro ◽  
Patrick Callaerts

Obesity is a chronic disease affecting millions of people worldwide. The fruit fly (Drosophila melanogaster) is an interesting research model to study metabolic and transcriptomic responses to obesogenic diets. However, the sex-specific differences in these responses are still understudied and perhaps underestimated. In this study, we exposed adult male and female Dahomey fruit flies to a standard diet supplemented with sugar, fat, or a combination of both. The exposure to a diet supplemented with 10% sugar and 10% fat efficiently induced an increase in the lipid content in flies, a hallmark for obesity. This increase in the lipid content was more prominent in males, while females displayed significant changes in the glycogen content. The strong effects of the diets on the ovarian size and number of mature oocytes were also present in females exposed to diets supplemented with fat and a combination of fat and sugar. In both males and females, the fat body morphology changed and was associated with an increase in the lipid content of fat cells in response to the diets. The expression of metabolism-related genes also displayed a strong sexually dimorphic response under normal conditions and in response to the sugar and/or fat-supplemented diets. Here, we showed that the exposure of adult fruit flies to an obesogenic diet containing both sugar and fat allowed studying sexual dimorphism in metabolism and the expression of genes regulating metabolism.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 791-802
Author(s):  
J A Coyne ◽  
S Aulard ◽  
A Berry

Abstract In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.


2019 ◽  
Vol 37 (3) ◽  
pp. 864-880
Author(s):  
Alison Pischedda ◽  
Michael P Shahandeh ◽  
Thomas L Turner

Abstract The behaviors of closely related species can be remarkably different, and these differences have important ecological and evolutionary consequences. Although the recent boom in genotype–phenotype studies has led to a greater understanding of the genetic architecture and evolution of a variety of traits, studies identifying the genetic basis of behaviors are, comparatively, still lacking. This is likely because they are complex and environmentally sensitive phenotypes, making them difficult to measure reliably for association studies. The Drosophila species complex holds promise for addressing these challenges, as the behaviors of closely related species can be readily assayed in a common environment. Here, we investigate the genetic basis of an evolved behavioral difference, pupation site choice, between Drosophila melanogaster and D. simulans. In this study, we demonstrate a significant contribution of the X chromosome to the difference in pupation site choice behavior between these species. Using a panel of X-chromosome deficiencies, we screened the majority of the X chromosome for causal loci and identified two regions associated with this X-effect. We then collect gene disruption and RNAi data supporting a single gene that affects pupation behavior within each region: Fas2 and tilB. Finally, we show that differences in tilB expression correlate with the differences in pupation site choice behavior between species. This evidence associating two genes with differences in a complex, environmentally sensitive behavior represents the first step toward a functional and evolutionary understanding of this behavioral divergence.


2019 ◽  
Vol 6 (6) ◽  
pp. 190069
Author(s):  
Tarun Gupta ◽  
Sarah E. Howe ◽  
Marlo L. Zorman ◽  
Brent L. Lockwood

Fighting between different species is widespread in the animal kingdom, yet this phenomenon has been relatively understudied in the field of aggression research. Particularly lacking are studies that test the effect of genetic distance, or relatedness, on aggressive behaviour between species. Here we characterized male–male aggression within and between species of fruit flies across the Drosophila phylogeny. We show that male Drosophila discriminate between conspecifics and heterospecifics and show a bias for the target of aggression that depends on the genetic relatedness of opponent males. Specifically, males of closely related species treated conspecifics and heterospecifics equally, whereas males of distantly related species were overwhelmingly aggressive towards conspecifics. To our knowledge, this is the first study to quantify aggression between Drosophila species and to establish a behavioural bias for aggression against conspecifics versus heterospecifics. Our results suggest that future study of heterospecific aggression behaviour in Drosophila is warranted to investigate the degree to which these trends in aggression among species extend to broader behavioural, ecological and evolutionary contexts.


2004 ◽  
Vol 79 (6) ◽  
pp. 351-359 ◽  
Author(s):  
Yoshihiro Kawahara ◽  
Takashi Matsuo ◽  
Masafumi Nozawa ◽  
Tadasu Shin-I ◽  
Yuji Kohara ◽  
...  

2016 ◽  
Vol 12 (12) ◽  
pp. 20160657 ◽  
Author(s):  
Mirjam Appel ◽  
Claus-Jürgen Scholz ◽  
Samet Kocabey ◽  
Sinead Savage ◽  
Christian König ◽  
...  

A painful event establishes two opponent memories: cues that are associated with pain onset are remembered negatively, whereas cues that coincide with the relief at pain offset acquire positive valence. Such punishment- versus relief-memories are conserved across species, including humans, and the balance between them is critical for adaptive behaviour with respect to pain and trauma. In the fruit fly, Drosophila melanogaster as a study case, we found that both punishment- and relief-memories display natural variation across wild-derived inbred strains, but they do not covary, suggesting a considerable level of dissociation in their genetic effectors. This provokes the question whether there may be heritable inter-individual differences in the balance between these opponent memories in man, with potential psycho-clinical implications.


2019 ◽  
Author(s):  
Tom Hill

AbstractBackgroundThe evolutionary dynamics of transposable elements (TEs) vary across the tree of life and even between closely related species with similar ecologies. In Drosophila, most of the focus on TE dynamics has been completed in Drosophila melanogaster and the overall pattern indicates that TEs show an excess of low frequency insertions, consistent with their frequent turn over and high fitness cost in the genome. Outside of D. melanogaster, insertions in the species Drosophila algonquin, suggests that this situation may not be universal, even within Drosophila. Here we test whether the pattern observed in D. melanogaster is similar across five Drosophila species that share a common ancestor more than fifty million years ago.ResultsFor the most part, TE family and order insertion frequency patterns are broadly conserved between species, supporting the idea that TEs have invaded species recently, are mostly costly and dynamics are conserved in orthologous regions of the host genomeConclusionsMost TEs retain similar activities and fitness costs across the Drosophila phylogeny, suggesting little evidence of drift in the dynamics of TEs across the phylogeny, and that most TEs have invaded species recently.


Sign in / Sign up

Export Citation Format

Share Document