scholarly journals Molecular analysis of a transposon-induced deletion of the nivea locus in Antirrhinum majus.

Genetics ◽  
1989 ◽  
Vol 123 (2) ◽  
pp. 417-425
Author(s):  
C Lister ◽  
C Martin

Abstract The transposable element Tam3 of Antirrhinum majus is capable of causing large-scale chromosomal restructuring. It induced a large deletion at the nivea locus, to produce the allele niv-:529. The deletion removed the entire nivea coding region while the element remains intact with the potential to induce further rearrangements. Genetic experiments showed that the endpoint of the deletion (called x) is closely linked to nivea. The DNA sequences of niv-:529, a genomic excision of Tam3 from niv-:529, and the original genomic position of x have been determined. These data suggest that the deletion could have resulted from an abortive transposition or through breakage and religation.

Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 171-184
Author(s):  
C Martin ◽  
S Mackay ◽  
R Carpenter

Abstract The transposable element, Tam3, gives rise to large-scale (greater than 1 kb) chromosomal rearrangements at a low frequency, when it is inserted at the nivea locus of Antirrhinum majus. Although some deletions may result from imprecise excision of Tam3, rearrangements involving deletion, dispersion and inverted duplication of flanking sequences, where Tam3 remains in situ, have also been identified. These rearrangements have been mapped at the molecular level, and the behavior of Tam3 following rearrangement has been observed. It is clear that Tam3 has enormous potential to restructure chromosomes through successive rounds of large-scale rearrangements. The mechanisms by which such rearrangements might arise are discussed.


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


2019 ◽  
Vol 201 (17) ◽  
Author(s):  
Dragutin J. Savic ◽  
Scott V. Nguyen ◽  
Kimberly McCullor ◽  
W. Michael McShan

ABSTRACTA large-scale genomic inversion encompassing 0.79 Mb of the 1.816-Mb-longStreptococcus pyogenesserotype M49 strain NZ131 chromosome spontaneously occurs in a minor subpopulation of cells, and in this report genetic selection was used to obtain a stable lineage with this chromosomal rearrangement. This inversion, which drastically displaces theorisite relative to the terminus, changes the relative length of the replication arms so that one replichore is approximately 0.41 Mb while the other is about 1.40 Mb in length. Genomic reversion to the original chromosome constellation is not observed in PCR-monitored analyses after 180 generations of growth in rich medium. Compared to the parental strain, the inversion surprisingly demonstrates a nearly identical growth pattern in the first phase of the exponential phase, but differences do occur when resources in the medium become limited. When cultured separately in rich medium during prolonged stationary phase or in an experimental acute infection animal model (Galleria mellonella), the parental strain and the invertant have equivalent survival rates. However, when they are coincubated together, bothin vitroandin vivo, the survival of the invertant declines relative to the level for the parental strain. The accompanying aspect of the study suggests that inversions taking place nearoriCalways happen to secure the linkage oforiCto DNA sequences responsible for chromosome partition. The biological relevance of large-scale inversions is also discussed.IMPORTANCEBased on our previous work, we created to our knowledge the largest asymmetric inversion, covering 43.5% of theS. pyogenesgenome. In spite of a drastic replacement of origin of replication and the unbalanced size of replichores (1.4 Mb versus 0.41 Mb), the invertant, when not challenged with its progenitor, showed impressive vitality for growthin vitroand in pathogenesis assays. The mutant supports the existing idea that slightly deleterious mutations can provide the setting for secondary adaptive changes. Furthermore, comparative analysis of the mutant with previously published data strongly indicates that even large genomic rearrangements survive provided that the integrity of theoriCand the chromosome partition cluster is preserved.


Cell ◽  
1984 ◽  
Vol 38 (3) ◽  
pp. 667-673 ◽  
Author(s):  
Michael Levine ◽  
Gerald M. Rubin ◽  
Robert Tjian

1987 ◽  
Vol 207 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Andrew Hudson ◽  
Rosemary Carpenter ◽  
Enrico S. Coen

1984 ◽  
Vol 194 (1-2) ◽  
pp. 138-143 ◽  
Author(s):  
Ulla Bonas ◽  
Hans Sommer ◽  
Brian J. Harrison ◽  
Heinz Saedler

1999 ◽  
Vol 341 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Gianluca TELL ◽  
Lucia PELLIZZARI ◽  
Gennaro ESPOSITO ◽  
Carlo PUCILLO ◽  
Paolo Emidio MACCHIA ◽  
...  

Pax proteins are transcriptional regulators that play important roles during embryogenesis. These proteins recognize specific DNA sequences via a conserved element: the paired domain (Prd domain). The low level of organized secondary structure, in the free state, is a general feature of Prd domains; however, these proteins undergo a dramatic gain in α-helical content upon interaction with DNA (‘induced fit’). Pax8 is expressed in the developing thyroid, kidney and several areas of the central nervous system. In humans, mutations of the Pax8 gene, which are mapped to the coding region of the Prd domain, give rise to congenital hypothyroidism. Here, we have investigated the molecular defects caused by a mutation in which leucine at position 62 is substituted for an arginine. Leu62 is conserved among Prd domains, and contributes towards the packing together of helices 1 and 3. The binding affinity of the Leu62Arg mutant for a specific DNA sequence (the C sequence of thyroglobulin promoter) is decreased 60-fold with respect to the wild-type Pax8 Prd domain. However, the affinities with which the wild-type and the mutant proteins bind to a non-specific DNA sequence are very similar. CD spectra demonstrate that, in the absence of DNA, both wild-type Pax8 and the Leu62Arg mutant possess a low α-helical content; however, in the Leu62Arg mutant, the gain in α-helical content upon interaction with DNA is greatly reduced with respect to the wild-type protein. Thus the molecular defect of the Leu62Arg mutant causes a reduced capability for induced fit upon DNA interaction.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Herong Huang ◽  
Ying Dong ◽  
Yanchun Xu ◽  
Yan Deng ◽  
Canglin Zhang ◽  
...  

Abstract Background Accumulating evidence suggest that compromised CYP2D6 enzyme activity caused by gene mutation could contribute to primaquine failure for the radical cure of vivax malaria. The current study aims to preliminarily reveal the association between the recurrence of vivax malaria in Yunnan Province and CYP2D6 gene mutation by analysing polymorphisms in the entire coding region of human CYP2D6 gene. Methods Blood samples were collected from patients with vivax malaria, who received "chloroquine and 8-day course of primaquine therapy" in Yunnan Province. The suspected relapsed cases were determined by epidemiological approaches and gene sequence alignment. PCR was conducted to amplify the CYP2D6 gene in the human genome, and the amplified products were then sequenced to compare with the non-mutation “reference” sequence, so as to ensure correct sequencing results and to determine 9 exon regions. Subsequently, the DNA sequences of 9 exons were spliced into the coding DNA sequence (CDS), which, by default, is known as maternal CDS. The paternal CDS was obtained by adjusting the bases according to the sequencing peaks. The mutation loci, haplotypes (star alleles), genotypes and odds ratios (OR) of all the CDSs were analysed. Results Of the119 maternal CDS chains in total with 1491 bp in length, 12 mutation sites in the 238 maternal and paternal CDS chains were detected. The c.408G > C mutation was most frequently detected in both suspected relapsed group (SR) and non-relapsed group (NR), reaching 85.2% (75/88) and 76.0% (114/150), respectively. The c.886C > T mutation was most closely related to the recurrence of vivax malaria (OR = 2.167, 95% CI 1.104–4.252, P < 0.05). Among the 23 haplotypes (Hap_1 ~ Hap_23), Hap_3 was non-mutant, and the sequence structure of Hap_9 was the most complicated one. Five star alleles, including *1, *2, *4, *10 and *39, were confirmed by comparison, and CYP2D6*10 allele accounted for the largest percentage (45.4%, 108/238). The frequency of CYP2D6*2 allele in the SR group was significantly higher than that in the NR group (Χ2 = 16.177, P < 0.05). Of the defined 24 genotypes, 8 genotypes, including *4/*4, *4/*o, *2/*39, *39/*m, *39/*x, *1/*r, *1/*n, and *v/*10, were detected only in the SR group. Conclusion Mutation of CYP2D6*10 allele accounts for the highest proportion of vivax malaria cases in Yunnan Province. The mutations of c. 886C > T and CYP2D6*2 allele, which correspond to impaired PQ metabolizer phenotype, are most closely related to the relapse of vivax malaria. In addition, the genotype *4/*4 with null CYP2D6 enzyme function was only detected in the SR group. These results reveal the risk of defected CYP2D6 enzyme activity that diminishes the therapeutic effect of primaquine on vivax malaria.


1988 ◽  
Vol 8 (2) ◽  
pp. 737-746
Author(s):  
D Eide ◽  
P Anderson

The transposable element Tc1 is responsible for most spontaneous mutations that occur in Caenorhabditis elegans variety Bergerac. We investigated the genetic and molecular properties of Tc1 transposition and excision. We show that Tc1 insertion into the unc-54 myosin heavy-chain gene was strongly site specific. The DNA sequences of independent Tc1 insertion sites were similar to each other, and we present a consensus sequence for Tc1 insertion that describes these similarities. We show that Tc1 excision was usually imprecise. Tc1 excision was imprecise in both germ line and somatic cells. Imprecise excision generated novel unc-54 alleles that had amino acid substitutions, amino acid insertions, and, in certain cases, probably altered mRNA splicing. The DNA sequences remaining after Tc1 somatic excision were the same as those remaining after germ line excision, but the frequency of somatic excision was at least 1,000-fold higher than that of germ line excision. The genetic properties of Tc1 excision, combined with the DNA sequences of the resulting unc-54 alleles, demonstrated that excision was dependent on Tc1 transposition functions in both germ line and somatic cells. Somatic excision was not regulated in the same strain-specific manner as germ-line excision was. In a genetic background where Tc1 transposition and excision in the germ line was not detectable, Tc1 excision in the soma still occurred at high frequency.


1987 ◽  
Vol 7 (5) ◽  
pp. 1873-1880
Author(s):  
H Nojima ◽  
K Kishi ◽  
H Sokabe

We have observed three calmodulin mRNA species in rat tissues. In order to know from how many expressed genes they are derived, we have investigated the genomic organization of calmodulin genes in the rat genome. From a rat brain cDNA library, we obtained two kinds of cDNAs (pRCM1 and pRCM3) encoding authentic calmodulin. DNA sequence analysis of these cDNA clones revealed substitutions of nucleotides at 73 positions of 450 nucleotides in the coding region, although the amino acid sequences of these calmodulins are exactly the same. DNA sequences in the 5' and 3' noncoding regions are quite different between these two cDNAs. From these results, we conclude that they are derived from two distinct bona fide calmodulin genes, CaMI (pRCM1) and CaMII (pRCM3). Total genomic Southern hybridization suggested four distinct calmodulin-related genes in the rat genome. By cloning and sequencing the calmodulin-related genes from rat genomic libraries, we demonstrated that the other two genes are processed pseudogenes generated from the CaMI (lambda SC9) and CaMII (lambda SC8) genes, respectively, through an mRNA-mediated process of insertions. Northern blotting showed that the CaMI gene is transcribed in liver, muscle, and brain in similar amounts, whereas the CaMII gene is transcribed mainly in brain. S1 nuclease mapping indicated that the CaMI gene produced two mRNA species (1.7 and 4 kilobases), whereas the CaMII gene expressed a single mRNA species (1.4 kilobases).


Sign in / Sign up

Export Citation Format

Share Document