scholarly journals Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors.

Genetics ◽  
1991 ◽  
Vol 129 (1) ◽  
pp. 177-189
Author(s):  
S Bonaccorsi ◽  
A Lohe

Abstract The entirely heterochromatic Y chromosome of Drosophila melanogaster contains a series of simple sequence satellite DNAs which together account for about 80% of its length. Molecular cloning of the three simple sequence satellite DNAs of D. melanogaster (1.672, 1.686 and 1.705 g/ml) revealed that each satellite comprises several distinct repeat sequences. Together 11 related sequences were identified and 9 of them were shown to be located on the Y chromosome. In the present study we have finely mapped 8 of these sequences along the Y by in situ hybridization on mitotic chromosome preparations. The hybridization experiments were performed on a series of cytologically determined rearrangements involving the Y chromosome. The breakpoints of these rearrangements provided an array of landmarks along the Y which have been used to localize each sequence on the various heterochromatic blocks defined by Hoechst and N-banding techniques. The results of this analysis indicate a good correlation between the N-banded regions and 1.705 repeats and between the Hoechst-bright regions and the 1.672 repeats. However, the molecular basis for banding does not appear to depend exclusively on DNA content, since heterochromatic blocks showing identical banding patterns often contain different combinations of satellite repeats. The distribution of satellite repeats has also been analyzed with respect to the male fertility factors of the Y chromosome. Both loop-forming (kl-5, kl-3 and ks-1) and non-loop-forming (kl-2 and ks-2) fertility genes contain substantial amounts of satellite DNAs. Moreover, each fertility region is characterized by a specific combination of satellite sequences rather than by an homogeneous array of a single type of repeat.(ABSTRACT TRUNCATED AT 250 WORDS)

2019 ◽  
Author(s):  
Wilbur K Mills ◽  
Yuh Chwen G. Lee ◽  
Antje M Kochendoerfer ◽  
Elaine M Dunleavy ◽  
Gary H. Karpen

AbstractLong arrays of simple, tandemly repeated DNA sequences (known as satellites) are enriched in centromeres1 and pericentromeric regions2, and contribute to chromosome segregation and other heterochromatin functions3,4. Surprisingly, satellite DNAs are expressed in many multicellular eukaryotes, and their aberrant transcription may contribute to carcinogenesis and cellular toxicity5-7. Satellite transcription and/or RNAs may also promote centromere and heterochromatin activities 8-12. However, we lack direct evidence that satellite DNA transcripts are required for normal cell or organismal functions. Here, we show that satellite RNAs derived from AAGAG tandem repeats are transcribed in many cell types throughout Drosophila melanogaster development, enriched in neuronal tissues and testes, localized within heterochromatic regions, and important for viability. Strikingly, we find that AAGAG transcripts are necessary for male fertility and are specifically required for normal histone-protamine exchange and sperm chromatin organization. Since AAGAG RNA-dependent events happen late in spermatogenesis when the transcripts are not detected, we speculate that AAGAG RNA functions in primary spermatocytes to ‘prime’ post-meiosis steps in sperm maturation. In addition to demonstrating specific essential functions for AAGAG RNAs, comparisons between closely related Drosophila species suggest that satellite repeats and their transcription evolve quickly to generate new functions.


Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1149-1174 ◽  
Author(s):  
A R Lohe ◽  
A J Hilliker ◽  
P A Roberts

Abstract Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multi-chromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)n (8 Mb), (AAGAG)n (7 Mb) and (AATAT)n (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.


1993 ◽  
Vol 90 (23) ◽  
pp. 11132-11136 ◽  
Author(s):  
J Gepner ◽  
T S Hays

A clone encoding a portion of the highly conserved ATP-binding domain of a dynein heavy-chain polypeptide was mapped to a region of the Drosophila melanogaster Y chromosome. Dyneins are large multisubunit enzymes that utilize the hydrolysis of ATP to move along microtubules. They were first identified as the motors that provide the force for flagellar and ciliary bending. Seven different dynein heavy-chain genes have been identified in D. melanogaster by PCR. In the present study, we demonstrate that one of the dynein genes, Dhc-Yh3, is located in Y chromosome region h3, which is contained within kl-5, a locus required for male fertility. The PCR clone derived from Dhc-Yh3 is 85% identical to the corresponding region of the beta heavy chain of sea urchin flagellar dynein but only 53% identical to a cytoplasmic dynein heavy chain from Drosophila. In situ hybridization to Drosophila testes shows Dhc-Yh3 is expressed in wild-type males but not in males missing the kl-5 region. These results are consistent with the hypothesis that the Y chromosome is needed for male fertility because it contains conventional genes that function during spermiogenesis.


Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Thomas Schmidt ◽  
Jörg Kudla

Monomers of a major family of tandemly repeated DNA sequences of Antirrhinum majus have been cloned and characterized. The repeats are 163–167 bp long, contain on average 60% A + T residues, and are organized in head-to-tail orientation. According to site-specific methylation differences two subsets of repeating units can be distinguished. Fluorescent in situ hybridization revealed that the repeats are localized at centromeric regions of six of the eight chromosome pairs of A. majus with substantial differences in array size. The monomeric unit shows no homologies to other plant satellite DNAs. The repeat exists in a similar copy number and conserved size in the genomes of six European species of the genus Antirrhinum. Tandemly repeated DNA sequences with homology to the cloned monomer were also found in the North American section Saerorhinum, indicating that this satellite DNA might be of ancient origin and was probably already present in the ancestral genome of both sections. Key words : Antirrhinum majus, satellite DNA, repetitive DNA, methylation, in situ hybridization.


2015 ◽  
Vol 146 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Manuel A. Garrido-Ramos

For decades, satellite DNAs have been the hidden part of genomes. Initially considered as junk DNA, there is currently an increasing appreciation of the functional significance of satellite DNA repeats and of their sequences. Satellite DNA families accumulate in the heterochromatin in different parts of the eukaryotic chromosomes, mainly in pericentromeric and subtelomeric regions, but they also span the functional centromere. Tandem repeat sequences may spread from subtelomeric to interstitial loci, leading to the formation of chromosome-specific loci or to the accumulation in equilocal sites in different chromosomes. They also appear as the main components of the heterochromatin in the sex-specific region of sex chromosomes. Satellite DNA, required for chromosome organization, also plays a role in pairing and segregation. Some satellite repeats are transcribed and can participate in the formation and maintenance of heterochromatin structure and in the modulation of gene expression. In addition to the identification of the different satellite DNA families, their characteristics and location, we are interested in determining their impact on the genomes, by identifying the mechanisms leading to their appearance and amplification as well as in understanding how they change over time, the factors affecting these changes, and the influence exerted by the evolutionary history of the organisms. On the other hand, satellite DNA sequences are rapidly evolving sequences that may cause reproductive barriers between organisms and promote speciation. The accumulation of experimental data collected in recent years and the emergence of new approaches based on next-generation sequencing and high-throughput genome analysis are opening new perspectives that are changing our understanding of satellite DNA. This review examines recent data to provide a timely update on the overall information gathered about this part of the genome, focusing on the advances in the knowledge of its origin, its evolution, and its potential functional roles.


1990 ◽  
Vol 10 (12) ◽  
pp. 6348-6355 ◽  
Author(s):  
K G Ten Hagen ◽  
D M Gilbert ◽  
H F Willard ◽  
S N Cohen

The timing of replication of centromere-associated human alpha satellite DNA from chromosomes X, 17, and 7 as well as of human telomeric sequences was determined by using density-labeling methods and fluorescence-activated cell sorting. Alpha satellite sequences replicated late in S phase; however, the alpha satellite sequences of the three chromosomes studied replicated at slightly different times. Human telomeres were found to replicate throughout most of S phase. These results are consistent with a model in which multiple initiations of replication occur at a characteristic time within the alpha satellite repeats of a particular chromosome, while the replication timing of telomeric sequences is determined by either telomeric origins that can initiate at different times during S phase or by replication origins within the flanking chromosomal DNA sequences.


1990 ◽  
Vol 10 (12) ◽  
pp. 6348-6355
Author(s):  
K G Ten Hagen ◽  
D M Gilbert ◽  
H F Willard ◽  
S N Cohen

The timing of replication of centromere-associated human alpha satellite DNA from chromosomes X, 17, and 7 as well as of human telomeric sequences was determined by using density-labeling methods and fluorescence-activated cell sorting. Alpha satellite sequences replicated late in S phase; however, the alpha satellite sequences of the three chromosomes studied replicated at slightly different times. Human telomeres were found to replicate throughout most of S phase. These results are consistent with a model in which multiple initiations of replication occur at a characteristic time within the alpha satellite repeats of a particular chromosome, while the replication timing of telomeric sequences is determined by either telomeric origins that can initiate at different times during S phase or by replication origins within the flanking chromosomal DNA sequences.


Genetics ◽  
1985 ◽  
Vol 110 (2) ◽  
pp. 299-312
Author(s):  
Robert M Gemmill ◽  
Jack N Levy ◽  
Winifred W Doane

ABSTRACT A cloned ä-amylase cDNA sequence from the mouse is homologous to a small set of DNA sequences from Drosophila melanogaster under appropriate conditions of hybridization. A number of recombinant lambda phage that carry homologous Drosophila genomic DNA sequences were isolated using the mouse clone as a hybridization probe. Putative amylase clones hybridized in situ to one or the other of two distinct sites in polytene chromosome 2R and were assigned to one of two classes, A and B. Clone λDm32, representing class A, hybridizes within chromosome section 53CD. Clone λDm65 of class B hybridizes within section 54A1-B1. Clone λDm65 is homologous to a 1450- to 1500-nucleotide RNA species, which is sufficiently long to code for α-amylase. No RNA homologous to λDm32 was detected. We suggest that the class B clone, λDm65, contains the functional Amy structural gene(s) and that class A clones contain an amylase pseudogene.


1989 ◽  
Vol 9 (3) ◽  
pp. 1173-1182
Author(s):  
K Lowenhaupt ◽  
A Rich ◽  
M L Pardue

Long stretches of (dC-dA)n.(dT-dG)n, abbreviated CA/TG, have a distinctive distribution on Drosophila chromosomes (M.L. Pardue, K. Lowenhaupt, A. Rich, and A. Nordheim, EMBO J. 6:1781-1789, 1987). The distribution of CA/TG suggests a correlation with the overall transcriptional activity of chromosomal regions and with the ability to undergo meiotic recombination. These correlations are conserved among Drosophila species and may indicate one or more chromosomal functions. To test the generality of these findings, we analyzed the distribution of the rest of the six possible mono- and dinucleotide repeats (A/T, C/G, AT/AT, CA/TG, CT/AG, and CG/CG). All but CG/CG were present at significant levels in the genomes of the six Drosophila species studied; however, A/T levels were an order of magnitude lower than those of the other sequences. Data base analyses suggested that the same sequences are present in other eucaryotes. Like CA/TG, both CT/AG and C/G showed increased levels on dosage-compensating chromosomes; however, the individual sites clearly differed for each sequence. In contrast, A/T and AT/AT, although present in Drosophila DNA, could not be detected in situ in polytene chromosomes. We also used in situ hybridization to analyze the neo-Y chromosome of Drosophila miranda, an ancestral autosome that has become attached to the Y chromosome and is now partially heterochromatic. The neo-Y has acquired repeated DNA sequences; we found that the added sequences are as devoid of mono- and dinucleotide repeats as other heterochromatin. The distribution and function of these sequences are likely to result from both their repetitious nature and base contents.


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 931-936 ◽  
Author(s):  
Koichi Sakamoto ◽  
Tomoko Abe ◽  
Tomoki Matsuyama ◽  
Shigeo Yoshida ◽  
Nobuko Ohmido ◽  
...  

Male-associated DNA sequences were analyzed in Cannabis sativa L. (hemp), a dioecious plant with heteromorphic sex chromosomes. DNA was isolated from male and female plants and subjected to random amplified polymorphic DNA analysis. Of 120 primers, 17 yielded 400 to 1500-bp fragments detectable in male, but not female, plants. These fragments were cloned and used as probes in gel-blot analysis of genomic DNA. When male and female DNA was hybridized with 2 of these male-specific fragments, MADC(male-associated DNA sequences in C. sativa)3 and MADC4, particularly intense bands specific to male plants were detected in addition to bands common to both sexes. The MADC3 and MADC4 sequences were shown to encode gag/pol polyproteins of copia-like retrotransposons. Fluorescence in situ hybridization with MADC3 and MADC4 as probes revealed a number of intense signals on the Y chromosome as well as dispersed signals on all chromosomes. The gel-blot analysis and fluorescence in situ hybridization results presented here support the hypothesis that accumulation of retrotransposable elements on the Y chromosome might be 1 cause of heteromorphism of sex chromosomes.Key words: Cannabis sativa, FISH, RAPD, retrotransposon, sex chromosome.


Sign in / Sign up

Export Citation Format

Share Document