scholarly journals The Caenorhabditis elegans spe-6 gene is required for major sperm protein assembly and shows second site non-complementation with an unlinked deficiency.

Genetics ◽  
1993 ◽  
Vol 133 (1) ◽  
pp. 79-86 ◽  
Author(s):  
J P Varkey ◽  
P L Jansma ◽  
A N Minniti ◽  
S Ward

Abstract Caenorhabditis elegans spermatozoa move by crawling. Their motility requires thin cytoskeletal filaments assembled from a unique cytoskeletal protein, the major sperm protein (MSP). During normal sperm development the MSP is segregated to developing sperm by assembly into filaments that form a paracrystalline array in a transient organelle, the fibrous body-membranous organelle. Mutations in the spe-6 gene cause sterility because they lead to defective primary spermatocytes that do not form spermatids. In these mutant spermatocytes the MSP fails to assemble into fibrous body filaments. Instead, the unassembled MSP distributes throughout the cytoplasm and nucleus. Thus, the spe-6 gene product is necessary for normal MSP localization and assembly during sperm development. In addition to their MSP assembly defect, spe-6 mutant spermatocytes arrest meiosis at diakinesis although their spindle pole bodies still replicate and separate. This results in spermatocytes with four half-spindles surrounding condensed, but unsegregated, chromosomes. All four spe-6 alleles, as well as a chromosome III deficiency that deletes the spe-6 gene, fail to complement two small overlapping chromosome IV deficiencies, eDf18 and eDf19. This non-allele-specific second site non-complementation suggests a concentration-dependent interaction between the spe-6 gene product and products of the gene(s) under eDf18 and eDf19, which include a cluster of sperm-specific genes. Since MSP filament assembly is highly concentration-dependent in vitro, the non-complementation might be expected if the sperm-specific gene products under eDf18 and eDf19 were needed together with the spe-6 gene product to promote MSP assembly.

1994 ◽  
Vol 107 (10) ◽  
pp. 2941-2949
Author(s):  
K.L. King ◽  
M. Stewart ◽  
T.M. Roberts

Sperm of the nematode, Ascaris suum, are amoeboid cells that do not require actin or myosin to crawl over solid substrata. In these cells, the role usually played by actin has been taken over by major sperm protein (MSP), which assembles into filaments that pack the sperm pseudopod. These MSP filaments are organized into multi-filament arrays called fiber complexes that flow centripetally from the leading edge of the pseudopod to the cell body in a pattern that is intimately associated with motility. We have characterized structurally a hierarchy of helical assemblies formed by MSP. The basic unit of the MSP cytoskeleton is a filament formed by two subfilaments coiled around one another along right-handed helical tracks. In vitro, higher-order assemblies (macrofibers) are formed by MSP filaments that coil around one another in a left-handed helical sense. The multi-filament assemblies formed by MSP in vitro are strikingly similar to the fiber complexes that characterize the sperm cytoskeleton. Thus, self-association is an intrinsic property of MSP filaments that distinguishes these fibers from actin filaments. The results obtained with MSP help clarify the roles of different aspects of the actin cytoskeleton in the generation of locomotion and, in particular, emphasize the contributions made by vectorial assembly and filament bundling.


2005 ◽  
Vol 25 (24) ◽  
pp. 11059-11072 ◽  
Author(s):  
Marta Hristova ◽  
Darcy Birse ◽  
Yang Hong ◽  
Victor Ambros

ABSTRACT A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare the mRNA abundance of C. elegans genes in wild-type animals to that in mutants with reduced or elevated lin-14 activity. Five of the candidate LIN-14 target genes identified by microarrays, including the insulin/insulin-like growth factor family gene ins-33, contain putative LIN-14 consensus sites in their upstream DNA sequences. Genetic analysis indicates that the developmental regulation of ins-33 mRNA involves the stage-specific repression of ins-33 transcription by LIN-14 via sequence-specific DNA binding. These results reinforce the conclusion that lin-14 encodes a novel class of transcription factor.


1984 ◽  
Vol 4 (3) ◽  
pp. 529-537
Author(s):  
M R Klass ◽  
S Kinsley ◽  
L C Lopez

The major sperm protein (MSP) of the nematode Caenorhabditis elegans is a low-molecular-weight (15,000) basic protein implicated in the pseudopodial movement of mature spermatozoa. Its synthesis occurs in a specific region of the gonad and is regulated at the level of transcription (M. Klass and D. Hirsh, Dev. Biol. 84:299-312, 1981; S. Ward and M. Klass, Dev. Biol. 92:203-208, 1982; Klass et al., Dev. Biol. 93:152-164, 1982). A developmentally regulated gene family has been identified that codes for this MSP. Whole genomic blots, as well as analysis of genomic clone banks, indicate that there are between 15 and 25 copies of the MSP gene in the nematode genome. Southern blot analysis also indicates that there is no rearrangement or amplification within the MSP gene family during development. No evidence was found of methylation at various restriction sites surrounding the MSP gene family, and similarly, no correlation between methylation and expression was observed. Three distinct members of this MSP gene family have been cloned, and their nucleotide sequences have been determined. Differential screening of a cDNA clone bank made from polyadenylated mRNA from adult males yielded 45 male-specific clones, 32 of which were clones of MSP genes. One of these cDNA clones was found to contain the entire nucleotide sequence for the MSP, including part of the 5' leader and all of the 3' trailing sequence. Genomic clones bearing copies of the MSP genes have been isolated. At least one of the members of this gene family is a pseudogene. Another member of the MSP gene family that has been cloned from genomic DNA contains the entire uninterrupted structural sequence for the MSP in addition to a 5' flanking sequence containing a promoter-like region with the classic TATA box, a sequence resembling the CAAT box, and a putative ribosome-binding sequence. The 3' trailing sequences of the genomic and the cDNA clones contain an AATAAA polyadenylation site.


Reproduction ◽  
2000 ◽  
pp. 135-142 ◽  
Author(s):  
K Sabeur ◽  
AT Vo ◽  
BA Ball

Angiotensin II is a hormone with a wide array of physiological effects that exerts its effect via interaction with two major subtypes of receptor. The results of this study show that angiotensin II (from 1 to 100 nmol l(-1)) initiates acrosomal exocytosis in equine spermatozoa that have undergone capacitation in vitro in a TALP-TEST (Tyrode's albumin lactate pyruvate; 188.7 mmol TES l(-1), 84.8 mmol Tris l(-1)) buffer with cAMP. The acrosome reaction and sperm viability were assessed with fluorescein isothiocyanate-Pisum sativum agglutinin (FITC-PSA) and Hoechst 33258, respectively. The initiation of the acrosome reaction by angiotensin II was strongly inhibited by losartan, a specific angiotensin II type 1 receptor antagonist. Although angiotensin II as well as progesterone both initiated the acrosome reaction in equine spermatozoa, there was no synergistic effect when both agonists were added simultaneously. Initiation of acrosomal exocytosis by angiotensin II was accompanied by a rapid and transient calcium influx that was assessed in capacitated spermatozoa loaded with Fura-2AM. In addition, the angiotensin II-mediated calcium influx was inhibited when spermatozoa were preincubated with losartan. Western blotting with an antibody against angiotensin II type 1 receptor detected a major sperm protein of 60 kDa. Indirect immunofluorescence of non-capacitated spermatozoa with the angiotensin II type 1 receptor antibody revealed labelling in the midpiece and tail. In capacitated spermatozoa, the angiotensin II type 1 receptor was localized mainly over the anterior region of the sperm head, the equatorial segment and occasionally on the postacrosomal region in addition to the sperm tail. In conclusion, this study demonstrated the ability of angiotensin II to stimulate the acrosome reaction in capacitated equine spermatozoa. This effect is mediated via the angiotensin II type 1 receptor and is accompanied by an increase in intracellular calcium.


2006 ◽  
Vol 299 (1) ◽  
pp. 105-121 ◽  
Author(s):  
Jana E. Harris ◽  
J. Amaranath Govindan ◽  
Ikuko Yamamoto ◽  
Joel Schwartz ◽  
Irina Kaverina ◽  
...  

1984 ◽  
Vol 4 (3) ◽  
pp. 529-537 ◽  
Author(s):  
M R Klass ◽  
S Kinsley ◽  
L C Lopez

The major sperm protein (MSP) of the nematode Caenorhabditis elegans is a low-molecular-weight (15,000) basic protein implicated in the pseudopodial movement of mature spermatozoa. Its synthesis occurs in a specific region of the gonad and is regulated at the level of transcription (M. Klass and D. Hirsh, Dev. Biol. 84:299-312, 1981; S. Ward and M. Klass, Dev. Biol. 92:203-208, 1982; Klass et al., Dev. Biol. 93:152-164, 1982). A developmentally regulated gene family has been identified that codes for this MSP. Whole genomic blots, as well as analysis of genomic clone banks, indicate that there are between 15 and 25 copies of the MSP gene in the nematode genome. Southern blot analysis also indicates that there is no rearrangement or amplification within the MSP gene family during development. No evidence was found of methylation at various restriction sites surrounding the MSP gene family, and similarly, no correlation between methylation and expression was observed. Three distinct members of this MSP gene family have been cloned, and their nucleotide sequences have been determined. Differential screening of a cDNA clone bank made from polyadenylated mRNA from adult males yielded 45 male-specific clones, 32 of which were clones of MSP genes. One of these cDNA clones was found to contain the entire nucleotide sequence for the MSP, including part of the 5' leader and all of the 3' trailing sequence. Genomic clones bearing copies of the MSP genes have been isolated. At least one of the members of this gene family is a pseudogene. Another member of the MSP gene family that has been cloned from genomic DNA contains the entire uninterrupted structural sequence for the MSP in addition to a 5' flanking sequence containing a promoter-like region with the classic TATA box, a sequence resembling the CAAT box, and a putative ribosome-binding sequence. The 3' trailing sequences of the genomic and the cDNA clones contain an AATAAA polyadenylation site.


2007 ◽  
Vol 18 (5) ◽  
pp. 1816-1825 ◽  
Author(s):  
Kexi Yi ◽  
Shawnna M. Buttery ◽  
Murray Stewart ◽  
Thomas M. Roberts

Leading edge protrusion in the amoeboid sperm of Ascaris suum is driven by the localized assembly of the major sperm protein (MSP) cytoskeleton in the same way that actin assembly powers protrusion in other types of crawling cell. Reconstitution of this process in vitro led to the identification of two accessory proteins required for MSP polymerization: an integral membrane phosphoprotein, MSP polymerization–organizing protein (MPOP), and a cytosolic component, MSP fiber protein 2 (MFP2). Here, we identify and characterize a 34-kDa cytosolic protein, MSP polymerization–activating kinase (MPAK) that links the activities of MPOP and MFP2. Depletion/add-back assays of sperm extracts showed that MPAK, which is a member of the casein kinase 1 family of Ser/Thr protein kinases, is required for motility. MPOP and MPAK comigrated by native gel electrophoresis, coimmunoprecipitated, and colocalized by immunofluorescence, indicating that MPOP binds to and recruits MPAK to the membrane surface. MPAK, in turn, phosphorylated MFP2 on threonine residues, resulting in incorporation of MFP2 into the cytoskeleton. Beads coated with MPAK assembled a surrounding cloud of MSP filaments when incubated in MPAK-depleted sperm extract, but only when supplemented with detergent-solubilized MPOP. Our results suggest that interactions involving MPOP, MPAK, and MFP2 focus MSP polymerization to the plasma membrane at the leading edge of the cell thereby generating protrusion and minimizing nonproductive filament formation elsewhere.


Sign in / Sign up

Export Citation Format

Share Document