scholarly journals Extragenic suppressors of Schizosaccharomyces pombe rad9 mutations uncouple radioresistance and hydroxyurea sensitivity from cell cycle checkpoint control.

Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 107-117
Author(s):  
H B Lieberman

Abstract Schizosaccharomyces pombe cells that contain a mutation within rad9 are sensitive to ionizing radiation, UV light and hydroxyurea, relative to wild-type strains. In addition, the mutants are moderately hypomutable by UV and unable to delay initiation of mitosis after treatment with radiation or hydroxyurea. Three radioresistant derivatives of rad9::ura4 cells were isolated, and each contained a single unique extragenic suppressor responsible for the acquired resistance. The suppressor loci also conferred radioresistance upon cells containing rad9-192, which differs from rad9+ by a single base pair change. The suppressors additionally enhanced the radioresistance of cells containing rad3-136, a mutation that leads to phenotypes similar to those mediated by rad9::ura4. None of the derivatives of rad9::ura4 cells recovered the ability to delay cycling in G2 after exposure to ionizing radiation or UV light. All three suppressor derivatives, relative to the parental rad9::ura4 strain, also exhibited a moderate increase in resistance to the DNA replication inhibitor hydroxyurea without gaining the ability to stop progression into mitosis despite the inhibition of DNA synthesis. Results are discussed in terms of models to explain the putative role of rad9 and the suppressor genes in promoting radioresistance and mediating checkpoint controls responsive to DNA damage or incomplete DNA replication.

1998 ◽  
Vol 95 (13) ◽  
pp. 7445-7450 ◽  
Author(s):  
J. A. Wright ◽  
K. S. Keegan ◽  
D. R. Herendeen ◽  
N. J. Bentley ◽  
A. M. Carr ◽  
...  

2001 ◽  
Vol 21 (15) ◽  
pp. 5156-5168 ◽  
Author(s):  
Sue A. Krause ◽  
Marie-Louise Loupart ◽  
Sharron Vass ◽  
Stefan Schoenfelder ◽  
Steve Harrison ◽  
...  

ABSTRACT Two alleles of the Drosophila melanogaster Rfc4(DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these twoDmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.


1995 ◽  
Vol 6 (12) ◽  
pp. 1793-1805 ◽  
Author(s):  
G Kanter-Smoler ◽  
K E Knudsen ◽  
G Jimenez ◽  
P Sunnerhagen ◽  
S Subramani

The Schizosaccharomyces pombe rad1+ gene is involved in the G2 DNA damage cell-cycle checkpoint and in coupling mitosis to completed DNA replication. It is also required for viability when the cdc17 (DNA ligase) or wee1 proteins are inactivated. We have introduced mutations into the coding regions of rad1+ by site-directed mutagenesis. The effects of these mutations on the DNA damage and DNA replication checkpoints have been analyzed, as well as their associated phenotypes in a cdc17-K42 or a wee1-50 background. For all alleles, the resistance to radiation or hydroxyurea correlates well with the degree of functioning of checkpoint pathways activated by these treatments. One mutation, rad1-S3, completely abolishes the DNA replication checkpoint while partially retaining the DNA damage checkpoint. As single mutants, the rad1-S1, rad1-S2, rad1-S5, and rad1-S6 alleles have a wild-type phenotype with respect to radiation sensitivity and checkpoint functions; however, like the rad1 null allele, the rad1-S1 and rad1-S2 alleles exhibit synthetic lethality at the restrictive temperature with the cdc17-K42 or the wee1-50 mutation. The rad1-S5 and rad1-S6 alleles allow growth at higher temperatures in a cdc17-K42 or wee1-50 background than does wild-type rad1+, and thus behave like "superalleles." In most cases both chromosomal and multi-copy episomal mutant alleles have been investigated, and the agreement between these two states is very good. We provide evidence that the functions of rad1 can be dissociated into three groups by specific mutations. Models for the action of these rad1 alleles are discussed. In addition, a putative negative regulatory domain of rad1 is identified.


2020 ◽  
Vol 22 ◽  
Author(s):  
Hannah L. Smith ◽  
Harriet Southgate ◽  
Deborah A. Tweddle ◽  
Nicola J. Curtin

Abstract DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.


Sign in / Sign up

Export Citation Format

Share Document