Empirical Nonparametric Bootstrap Strategies in Quantitative Trait Loci Mapping: Conditioning on the Genetic Model

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 525-535
Author(s):  
Claude M Lebreton ◽  
Peter M Visscher

AbstractSeveral nonparametric bootstrap methods are tested to obtain better confidence intervals for the quantitative trait loci (QTL) positions, i.e., with minimal width and unbiased coverage probability. Two selective resampling schemes are proposed as a means of conditioning the bootstrap on the number of genetic factors in our model inferred from the original data. The selection is based on criteria related to the estimated number of genetic factors, and only the retained bootstrapped samples will contribute a value to the empirically estimated distribution of the QTL position estimate. These schemes are compared with a nonselective scheme across a range of simple configurations of one QTL on a one-chromosome genome. In particular, the effect of the chromosome length and the relative position of the QTL are examined for a given experimental power, which determines the confidence interval size. With the test protocol used, it appears that the selective resampling schemes are either unbiased or least biased when the QTL is situated near the middle of the chromosome. When the QTL is closer to one end, the likelihood curve of its position along the chromosome becomes truncated, and the nonselective scheme then performs better inasmuch as the percentage of estimated confidence intervals that actually contain the real QTL's position is closer to expectation. The nonselective method, however, produces larger confidence intervals. Hence, we advocate use of the selective methods, regardless of the QTL position along the chromosome (to reduce confidence interval sizes), but we leave the problem open as to how the method should be altered to take into account the bias of the original estimate of the QTL's position.

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1673-1686
Author(s):  
Jörn Bennewitz ◽  
Norbert Reinsch ◽  
Ernst Kalm

Abstract The nonparametric bootstrap approach is known to be suitable for calculating central confidence intervals for the locations of quantitative trait loci (QTL). However, the distribution of the bootstrap QTL position estimates along the chromosome is peaked at the positions of the markers and is not tailed equally. This results in conservativeness and large width of the confidence intervals. In this study three modified methods are proposed to calculate nonparametric bootstrap confidence intervals for QTL locations, which compute noncentral confidence intervals (uncorrected method I), correct for the impact of the markers (weighted method I), or both (weighted method II). Noncentral confidence intervals were computed with an analog of the highest posterior density method. The correction for the markers is based on the distribution of QTL estimates along the chromosome when the QTL is not linked with any marker, and it can be obtained with a permutation approach. In a simulation study the three methods were compared with the original bootstrap method. The results showed that it is useful, first, to compute noncentral confidence intervals and, second, to correct the bootstrap distribution of the QTL estimates for the impact of the markers. The weighted method II, combining these two properties, produced the shortest and less biased confidence intervals in a large number of simulated configurations.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 463-473
Author(s):  
Bruno Goffinet ◽  
Sophie Gerber

Abstract This article presents a method to combine QTL results from different independent analyses. This method provides a modified Akaike criterion that can be used to decide how many QTL are actually represented by the QTL detected in different experiments. This criterion is computed to choose between models with one, two, three, etc., QTL. Simulations are carried out to investigate the quality of the model obtained with this method in various situations. It appears that the method allows the length of the confidence interval of QTL location to be consistently reduced when there are only very few “actual” QTL locations. An application of the method is given using data from the maize database available online at http://www.agron.missouri.edu/.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 867-883 ◽  
Author(s):  
Nengjun Yi ◽  
Shizhong Xu ◽  
David B Allison

AbstractMost complex traits of animals, plants, and humans are influenced by multiple genetic and environmental factors. Interactions among multiple genes play fundamental roles in the genetic control and evolution of complex traits. Statistical modeling of interaction effects in quantitative trait loci (QTL) analysis must accommodate a very large number of potential genetic effects, which presents a major challenge to determining the genetic model with respect to the number of QTL, their positions, and their genetic effects. In this study, we use the methodology of Bayesian model and variable selection to develop strategies for identifying multiple QTL with complex epistatic patterns in experimental designs with two segregating genotypes. Specifically, we develop a reversible jump Markov chain Monte Carlo algorithm to determine the number of QTL and to select main and epistatic effects. With the proposed method, we can jointly infer the genetic model of a complex trait and the associated genetic parameters, including the number, positions, and main and epistatic effects of the identified QTL. Our method can map a large number of QTL with any combination of main and epistatic effects. Utility and flexibility of the method are demonstrated using both simulated data and a real data set. Sensitivity of posterior inference to prior specifications of the number and genetic effects of QTL is investigated.


2000 ◽  
Vol 75 (3) ◽  
pp. 345-355 ◽  
Author(s):  
YUEFU LIU ◽  
ZHAO-BANG ZENG

Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the efficiency of a QTL mapping study. A general statistical method using mixture model procedures and the EM algorithm is developed for mapping QTL from various cross designs of multiple inbred lines. The general procedure features three cross design matrices, W, that define the contribution of parental lines to a particular cross and a genetic design matrix, D, that specifies the genetic model used in multiple line crosses. By appropriately specifying W matrices, the statistical method can be applied to various cross designs, such as diallel, factorial, cyclic, parallel or arbitrary-pattern cross designs with two or multiple parental lines. Also, with appropriate specification for the D matrix, the method can be used to analyse different kinds of cross populations, such as F2 backcross, four-way cross and mixed crosses (e.g. combining backcross and F2). Simulation studies were conducted to explore the properties of the method, and confirmed its applicability to diverse experimental designs.


2021 ◽  
Vol 22 ◽  
Author(s):  
Zining Yang ◽  
Yaning Yang ◽  
Xu Steven Xu ◽  
Min Yuan

Background: In genetic association studies with quantitative trait loci (QTL), the association between a candidate genetic marker and the trait of interest is commonly examined by the omnibus F test or by the t-test corresponding to a given genetic model or mode of inheritance. It is known that the t-test with a correct model specification is more powerful than the F test. However, since the underlying genetic model is rarely known in practice, the use of a model-specific t-test may incur substantial power loss. Robust-efficient tests, such as the Maximin Efficiency Robust Test (MERT) and MAX3 have been proposed in the literature. Methods: In this paper, we propose a novel two-step robust-efficient approach, namely, the genetic model selection (GMS) method for quantitative trait analysis. GMS selects a genetic model by testing Hardy-Weinberg disequilibrium (HWD) with extremal samples of the population in the first step and then applies the corresponding genetic model-specific t-test in the second step. Results: Simulations show that GMS is not only more efficient than MERT and MAX3, but also has comparable power to the optimal t-test when the genetic model is known. Conclusion: Application to the data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort demonstrate that the proposed approach can identify meaningful biological SNPs on chromosome 19.


2007 ◽  
Vol 48 (9) ◽  
pp. 2039-2046 ◽  
Author(s):  
Mayumi Kumazawa ◽  
Misato Kobayashi ◽  
Fusayo Io ◽  
Takahiro Kawai ◽  
Masahiko Nishimura ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1243-1261 ◽  
Author(s):  
Chen-Hung Kao ◽  
Zhao-Bang Zeng

AbstractWe use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called Cockerham's model, for studying epistasis between genes. The properties of Cockerham's model in modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and discussed. Because of its orthogonal property, Cockerham's model has several advantages in partitioning genetic variance into components, interpreting and estimating gene effects, and application to quantitative trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also addressed. Real and simulated examples are used to illustrate Cockerham's model, compare different models, and map for epistatic QTL. Finally, we extend Cockerham's model to multiple loci and discuss its applications to QTL mapping.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 366 ◽  
Author(s):  
María-Angélica Parra-Galindo ◽  
Clara Piñeros-Niño ◽  
Johana Carolina Soto-Sedano ◽  
Teresa Mosquera-Vasquez

Potatoes are an important staple food worldwide and are the third main source of antioxidants in the human diet. One of the most important antioxidant compounds in potatoes is the anthocyanin pigments. Some reports indicate a high positive correlation between color intensity, anthocyanins content, and antioxidant level in potato tubers. The variation in anthocyanins composition and content in potato tubers among diverse germplasm sources has important nutritional and health implications and constitutes an interesting trait for potato breeding programs focused on enhancing the anthocyanin and antioxidant contents of potato materials. We identified and quantified five anthocyanidins (delphinidin, cyanidin, petunidin, pelargonidin, and peonidin) on tubers from the Colombian germplasm collection of Solanum tuberosum L. Group Phureja. The phenotypic data were merged into a genome-wide association study in order to identify genomic regions associated with the nutritional compounds’ variation in potatoes. The association was conducted using a 7520 single nucleotide polymorphisms markers matrix. Seven quantitative trait loci were identified. Chromosomes I and X harbored the most stable quantitative trait loci (QTL). Three quantitative trait loci were identified close to previously reported genes involved in the regulation of anthocyanins in potato tubers. The genomic regions of these QTL reveal presumptive candidate genes as genetic factors that are the basis for a better understanding of the genetic architecture of the regulation of nutritional compounds in potatoes.


2004 ◽  
Vol 97 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Clarke G. Tankersley ◽  
Karl W. Broman

The genetic basis for differences in the regulation of breathing is certainly multigenic. The present paper builds on a well-established genetic model of differences in breathing using inbred mouse strains. We tested the interactive effects of hypoxia and hypercapnia in two strains of mice known for variation in hypercapnic ventilatory sensitivity (HCVS); i.e., high gain in C57BL/6J (B6) and low gain in C3H/HeJ (C3) mice. Strain differences in the magnitude and pattern of breathing were measured during normoxia [inspired O2 fraction (FiO2) = 0.21] and hypoxia (FiO2 = 0.10) with mild or severe hypercapnia (inspired CO2 fraction = 0.03 or 0.08) using whole body plethysmography. At each level of FiO2, the change in minute ventilation (V̇e) from 3 to 8% CO2 was computed, and the strain differences between B6 and C3 mice in HCVS were maintained. Inheritance patterns showed potentiation effects of hypoxia on HCVS (i.e., CO2 potentiation) unique to the B6C3F1/J offspring of B6 and C3 progenitors; i.e., the change in V̇e from 3 to 8% CO2 was significantly greater ( P < 0.01) with hypoxia relative to normoxia in F1 mice. Linkage analysis using intercross progeny (F2; n = 52) of B6 and C3 progenitors revealed two significant quantitative trait loci associated with variable HCVS phenotypes. After normalization for body weight, variation in V̇e responses during 8% CO2 in hypoxia was linked to mouse chromosome 1 (logarithm of the odds ratio = 4.4) in an interval between 68 and 89 cM (i.e., between D1Mit14 and D1Mit291). The second quantitative trait loci linked differences in CO2 potentiation to mouse chromosome 5 (logarithm of the odds ratio = 3.7) in a region between 7 and 29 cM (i.e., centered at D5Mit66). In conclusion, these results support the hypothesis that a minimum of two significant genes modulate the interactive effects of hypoxia and hypercapnia in this genetic model.


Sign in / Sign up

Export Citation Format

Share Document