The fluffy Gene of Neurospora crassa Encodes a Gal4p-Type C6 Zinc Cluster Protein Required for Conidial Development

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1813-1820 ◽  
Author(s):  
Lori A Bailey ◽  
Daniel J Ebbole

Abstract Neurospora crassa fluffy (fl) mutants are unable to produce macroconidia. We cloned the fl gene to determine its role in regulating conidiation. A cosmid clone containing fl was identified by complementation. The sequence of fl revealed that it encodes a Gal4p-type C6 zinc cluster protein with greatest similarity to the N. crassa NIT4 protein that regulates genes required for nitrate utilization. Analysis of several fl mutant alleles demonstrated that null mutants are blocked in the budding phase of development required to produce conidiophores. fl mRNA is transiently induced just prior to the developmental commitment to budding growth. This timing of fl expression is consistent with a role for FL protein in activation of the previously characterized conidiation-specific (con) genes, con-6 and con-10. These data suggest that FL acts as a developmentally regulated transcription factor required for conidiophore morphogenesis.

1999 ◽  
Vol 214 (2) ◽  
pp. 354-369 ◽  
Author(s):  
Michael Howell ◽  
Fumiko Itoh ◽  
Christophe E. Pierreux ◽  
Sigridur Valgeirsdottir ◽  
Susumu Itoh ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyang Li ◽  
Qian Liu ◽  
Jingen Li ◽  
Liangcai Lin ◽  
Xiaolin Li ◽  
...  

Abstract Background Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. Results In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. Conclusions RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.


2021 ◽  
Author(s):  
Avishek Roy ◽  
Ranjan Tamuli

Abstract Heat shock proteins (Hsps) are molecular chaperones and required for survival of organisms under heat stress conditions. In this study, we studied Hsp80, a member of the Hsp90 family, in Neurospora crassa. The expression of hsp80 was severely reduced in the N. crassa calcineurin B subunit RIP-mutant (cnb-1RIP) strains under the heat shock conditions. Furthermore, the expression levels of cnb-1, hsp60, hsp80, and the calcineurin-regulated transcription factor crz-1 were increased, but expression levels were reduced in the presence of the calcineurin inhibitor FK506 under the heat shock stress in the N. crassa wild type. Therefore, the calcineurin-crz-1 signaling pathway transcriptionally regulates hsp60 and hsp80 under the heat shock stress condition in N. crassa. In addition, the transcript levels of trm-9 and nca-2, a Ca2+ sensor and a Ca2+ ATPase, respectively, were increased under the heat shock stress condition. Moreover, the expression of the hsp80, but not the hsp60, was reduced in the Δtrm-9, Δnca-2, and the Δtrm-9 Δnca-2 double mutants. These results suggested that hsp80, trm-9, and nca-2 play a role in coping the heat shock stress in N. crassa. We found that CRZ-1 binds to 5ʹ-CCTTCACA-3ʹ and 5ʹ-AGCGGAGC-3ʹ 8 bp nucleotide sequences, located about 1075 bp and 679 bp upstream of the ATG start codon, respectively, of hsp80. We also found that CRZ-1 binds to an 8 bp nucleotide sequence 5ʹ-ACCGCGCC-3ʹ, located 234 bp upstream of the ATG start codon of nca-2 under Ca2+ stress condition. Thus, cnb-1, hsp60, hsp80, and crz-1 are involved in the heat shock stress response in N. crassa. Moreover, CRZ-1 upregulates the expressions of hsp80 and nca-2 under the heat shock stress and Ca2+ stress conditions, respectively, in N. crassa.


2018 ◽  
Vol 122 (6) ◽  
pp. 570-582 ◽  
Author(s):  
Ana Carolina Boni ◽  
Daniela Luz Ambrósio ◽  
Fernanda Barbosa Cupertino ◽  
Alejandro Montenegro-Montero ◽  
Stela Virgilio ◽  
...  

1993 ◽  
Vol 13 (4) ◽  
pp. 2235-2246
Author(s):  
R J Arceci ◽  
A A King ◽  
M C Simon ◽  
S H Orkin ◽  
D B Wilson

We report the cDNA cloning and characterization of mouse GATA-4, a new member of the family of zinc finger transcription factors that bind a core GATA motif. GATA-4 cDNA was identified by screening a 6.5-day mouse embryo library with oligonucleotide probes corresponding to a highly conserved region of the finger domains. Like other proteins of the family, GATA-4 is approximately 50 kDa in size and contains two zinc finger domains of the form C-X-N-C-(X17)-C-N-X-C. Cotransfection assays in heterologous cells demonstrate that GATA-4 trans activates reporter constructs containing GATA promoter elements. Northern (RNA) analysis and in situ hybridization show that GATA-4 mRNA is expressed in the heart, intestinal epithelium, primitive endoderm, and gonads. Retinoic acid-induced differentiation of mouse F9 cells into visceral or parietal endoderm is accompanied by increased expression of GATA-4 mRNA and protein. In vitro differentiation of embryonic stem cells into embryoid bodies is also associated with increased GATA-4 expression. We conclude that GATA-4 is a tissue-specific, retinoic acid-inducible, and developmentally regulated transcription factor. On the basis of its tissue distribution, we speculate that GATA-4 plays a role in gene expression in the heart, intestinal epithelium, primitive endoderm, and gonads.


2008 ◽  
Vol 45 (12) ◽  
pp. 1562-1569 ◽  
Author(s):  
Kazuhiro Yamashita ◽  
Azusa Shiozawa ◽  
Setsuko Watanabe ◽  
Fumiyasu Fukumori ◽  
Makoto Kimura ◽  
...  

mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Eva-Maria Mayr ◽  
Bernardo Ramírez-Zavala ◽  
Ines Krüger ◽  
Joachim Morschhäuser

ABSTRACT The recently emerged pathogenic yeast Candida auris is a major concern for human health, because it is easily transmissible, difficult to eradicate from hospitals, and highly drug resistant. Most C. auris isolates are resistant to the widely used antifungal drug fluconazole due to mutations in the target enzyme Erg11 and high activity of efflux pumps, such as Cdr1. In the well-studied, distantly related yeast Candida albicans, overexpression of drug efflux pumps also is a major mechanism of acquired fluconazole resistance and caused by gain-of-function mutations in the zinc cluster transcription factors Mrr1 and Tac1. In this study, we investigated a possible involvement of related transcription factors in efflux pump expression and fluconazole resistance of C. auris. The C. auris genome contains three genes encoding Mrr1 homologs and two genes encoding Tac1 homologs, and we generated deletion mutants lacking these genes in two fluconazole-resistant strains from clade III and clade IV. Deletion of TAC1b decreased the resistance to fluconazole and voriconazole in both strain backgrounds, demonstrating that the encoded transcription factor contributes to azole resistance in C. auris strains from different clades. CDR1 expression was not or only minimally affected in the mutants, indicating that Tac1b can confer increased azole resistance by a CDR1-independent mechanism. IMPORTANCE Candida auris is a recently emerged pathogenic yeast that within a few years after its initial description has spread all over the globe. C. auris is a major concern for human health, because it can cause life-threatening systemic infections, is easily transmissible, and is difficult to eradicate from hospital environments. Furthermore, C. auris is highly drug resistant, especially against the widely used antifungal drug fluconazole. Mutations in the drug target and high activity of efflux pumps are associated with azole resistance, but it is not known how drug resistance genes are regulated in C. auris. We have investigated the potential role of several candidate transcriptional regulators in the intrinsic fluconazole resistance of C. auris and identified a transcription factor that contributes to the high resistance to fluconazole and voriconazole of two C. auris strains from different genetic clades, thereby providing insight into the molecular basis of drug resistance of this medically important yeast.


2011 ◽  
Vol 10 (8) ◽  
pp. 1110-1121 ◽  
Author(s):  
Sabrina Schubert ◽  
Christina Popp ◽  
P. David Rogers ◽  
Joachim Morschhäuser

ABSTRACTThe overexpression of theMDR1gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to the widely used antimycotic agent fluconazole and other toxic compounds in the pathogenic yeastCandida albicans. The zinc cluster transcription factor Mrr1 controlsMDR1expression in response to inducing chemicals, and gain-of-function mutations inMRR1are responsible for the constitutiveMDR1upregulation in fluconazole-resistantC. albicansstrains. To understand how Mrr1 activity is regulated, we identified functional domains of this transcription factor. A hybrid protein consisting of the N-terminal 106 amino acids of Mrr1 and the transcriptional activation domain of Gal4 fromSaccharomyces cerevisiaeconstitutively inducedMDR1expression, demonstrating that the DNA binding domain is sufficient to target Mrr1 to theMDR1promoter. Using a series of C-terminal truncations and systematic internal deletions, we could show that Mrr1 contains multiple activation and inhibitory domains. One activation domain (AD1) is located in the C terminus of Mrr1. When fused to the tetracycline repressor TetR, this distal activation domain induced gene expression from a TetR-dependent promoter. The deletion of an inhibitory region (ID1) located near the distal activation domain resulted in constitutive activity of Mrr1. The additional removal of AD1 abolished the constitutive activity, but the truncated Mrr1 still could activate theMDR1promoter in response to the inducer benomyl. These results demonstrate that the activity of Mrr1 is regulated in multiple ways and provide insights into the function of an important mediator of drug resistance inC. albicans.


1989 ◽  
Vol 3 (11) ◽  
pp. 1677-1688 ◽  
Author(s):  
B D Dynlacht ◽  
L D Attardi ◽  
A Admon ◽  
M Freeman ◽  
R Tjian

Sign in / Sign up

Export Citation Format

Share Document