scholarly journals P-Element Repression in Drosophila melanogaster by Variegating Clusters of P-lacZ-white Transgenes

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1631-1642 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Antoine Boivin ◽  
Dominique Anxolabéhère

Abstract In Drosophila, clusters of P transgenes (P-lac-w) display a variegating phenotype for the w marker. In addition, X-ray-induced rearrangements of chromosomes bearing such clusters may lead to enhancement of the variegated phenotype. Since P-lacZ transgenes in subtelomeric heterochromatin have some P-element repression abilities, we tested whether P-lac-w clusters also have the capacity to repress P-element activity in the germline. One cluster (T-1), located on a rearranged chromosome (T2;3) and derived from a line bearing a variegating tandem array of seven P-lac-w elements, partially represses the dysgenic sterility (GD sterility) induced by P elements. This cluster also strongly represses in trans the expression of P-lacZ elements in the germline. This latter suppression shows a maternal effect. Finally, the combination of variegating P-lac-w clusters and a single P-lacZ reporter inserted in subtelomeric heterochromatic sequences at the X chromosome telomere (cytological site 1A) leads to strong repression of dysgenic sterility. These results show that repression of P-induced dysgenic sterility can be elicited in the absence of P elements encoding a polypeptide repressor and that a transgene cluster can repress the expression of a single homologous transgene at a nonallelic position. Implications for models of transposable element silencing are discussed.

Genetics ◽  
1991 ◽  
Vol 129 (2) ◽  
pp. 501-512 ◽  
Author(s):  
S Ronsseray ◽  
M Lehmann ◽  
D Anxolabéhère

Abstract Two P elements, inserted at the cytological site 1A on an X chromosome from an Drosophila melanogaster natural population (Lerik, USSR), were isolated by genetic methods to determine if they are sufficient to cause the P cytotype, the cellular condition that regulates the P family of transposable element. The resulting "Lerik P(1A)" line (abbreviated "Lk-P(1A)") carries only one P element in situ hybridization site but genomic Southern analysis indicates that this site contains two, probably full length, P copies separated by at least one EcoRI cleavage site. Because the Lk-P(1A) line shows some transposase activity, at least one of these two P elements is autonomous. The Lk-P(1A) line fully represses germline P element activity as judged by the GD sterility and snw hypermutability assays; this result shows that the P cytotype can be elicited by only two P element copies. However, the Lk-P(1A) line does not fully repress delta 2-3(99B) transposase activity in the soma, although it fully represses delta 2-3(99B) transposase activity in the germline (delta 2-3(99B) is an in vitro modified P element that produces a high level of transposase activity in both the germline and the soma). The germline regulatory properties of the Lk-P(1A) line are maternally transmitted, even when the delta 2-3(99B) element is used as the source of transposase. By contrast, the partial regulation of delta 2-3(99B) somatic activity is chromosomally inherited. These results suggest that the regulatory P elements of the Lk-P(1A) line are inserted near a germline-specific enhancer.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 663-676 ◽  
Author(s):  
M J Simmons ◽  
J D Raymond ◽  
K E Rasmusson ◽  
L M Miller ◽  
C F McLarnon ◽  
...  

Abstract Inbred lines derived from a strain called Sexi were analyzed for their abilities to repress P element-mediated gonadal dysgenesis. One line had high repression ability, four had intermediate ability and two had very low ability. The four intermediate lines also exhibited considerable within-line variation for this trait; furthermore, in at least two cases, this variation could not be attributed to recurring P element movement. Repression of gonadal dysgenesis in the hybrid offspring of all seven lines was due primarily to a maternal effect; there was no evidence for repression arising de novo in the hybrids themselves. In one of the lines, repression ability was inherited maternally, indicating the involvement of cytoplasmic factors. In three other lines, repression ability appeared to be determined by partially dominant or additive chromosomal factors; however, there was also evidence for a maternal effect that reduced the expression of these factors in at least two of the lines. In another line, repression ability seemed to be due to recessive chromosomal factors. All seven lines possessed numerous copies of a particular P element, called KP, which has been hypothesized to produce a polypeptide repressor of gonadal dysgenesis. This hypothesis, however, does not explain why the inbred Sexi lines varied so much in their repression abilities. It is suggested that some of this variation may be due to differences in the chromosomal position of the KP elements, or that other nonautonomous P elements are involved in the repression of hybrid dysgenesis in these lines.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 149-160 ◽  
Author(s):  
B Lemaitre ◽  
S Ronsseray ◽  
D Coen

Abstract The transposition of P elements in Drosophila melanogaster is regulated by products encoded by the P elements themselves. The P cytotype, which represses transposition and associated phenomena, exhibits both a maternal effect and maternal inheritance. The genetic and molecular mechanisms of this regulation are complex and not yet fully understood. In a previous study, using P-lacZ fusion genes, we have shown that P element regulatory products were able to inhibit the activity of the P promoter in somatic tissues. However, the repression observed did not exhibit the maternal effect characteristic of the P cytotype. With a similar approach, we have assayed in vivo the effect of P element regulatory products in the germline. We show that the P cytotype is able to repress the P promoter in the germline as well as in the soma. Furthermore, this repression exhibits a maternal effect restricted to the germline. On the basis of these new observations, we propose a model for the mechanism of P cytotype repression and its maternal inheritance.


1991 ◽  
Vol 57 (3) ◽  
pp. 213-226 ◽  
Author(s):  
Ellen M. Heath ◽  
Michael J. Simmons

SummaryTwelve inbred lines derived from an M′ strain of Drosophila melanogaster were used to study the repression of P-element-mediated hybrid dysgenesis. Initial assessments indicated that the lines differed in the ability to repress gonadal dysgenesis, and that this ability was highly correlated with the ability to repress snw hypermutability. Later assessments indicated that most of the lines with low or intermediate repression potential evolved to a state of higher repression potential; however, Southern analyses failed to reveal significant changes in the array of genomic P elements that could account for this evolution. In addition, none of the lines possessed the incomplete P element known as KP, which has been proposed to explain repression in some D. melanogaster strains. One of the lines maintained intermediate repression potential throughout the period of study (52 generations), indicating that the intermediate condition was not intrinsically unstable. Genetic analyses demonstrated that in some of the lines, repression potential was influenced by factors that were inherited maternally through at least two generations; however, these factors were not as influential as those in a classic P cytotype strain. Additional tests with a dysgenesis-inducing X chromosome called T-5 indicated that repression itself was mediated by a combination of maternal effects and paternally inherited factors that were expressed after fertilization. These tests also suggested that in some circumstances, the P transposase, or its message, might be transmitted through the maternal cytoplasm.


1990 ◽  
Vol 56 (1) ◽  
pp. 3-14 ◽  
Author(s):  
C. Biémont ◽  
S. Ronsseray ◽  
D. Anxolabéhère ◽  
H. Izaabel ◽  
C. Gautier

SummarySeventeen highly-inbred lines of Drosophila melanogaster extracted from an M′ strain (in the P/M system of hybrid dysgenesis) were studied for their cytotype and the number and chromosomal location of complete and defective P elements. While most lines were of M cytotype, three presented a P cytotype (the condition that represses P-element activity) and one was intermediate between M and P. All lines were found to possess K.P elements and only eight to bear full-sized P elements. Only the lines with full-sized P elements showed detectable changes in their P-insertion pattern over generations; their rates of gain and of loss of P-element sites were equal to 0·12 and 0·09 per genome, per generation, respectively. There was no correlation between these two rates within lines, suggesting independent transpositions and excisions in the inbred genomes. The results of both Southern blot analysis and in situ hybridization of probes made from left and right sides of the P element strongly suggested the presence of a putative complete P element in region 1A of the X chromosome in the three lines with a P cytotype; the absence of P copy in this 1A region in lines with an M cytotype, favours the hypothesis that the P element inserted in 1A could play a major role in the P-cytotype determination. Insertion of a defective 2 kb P element was also observed in region 93F in 9 of the 13 M lines. The regulation of the P-element copy number in our lines appeared not to be associated with the ratio of full-length and defective P elements.


Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 121-137
Author(s):  
M A O'Brien ◽  
M S Roberts ◽  
P H Taghert

Abstract We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes.


1999 ◽  
Vol 21 (21) ◽  
pp. 51 ◽  
Author(s):  
Chirlei Cintia Klein ◽  
Liliana Essi ◽  
Ronaldo Medeiros Golombieski ◽  
Élgion Lúcio da Silva Loreto

Hybrid dysgenesis has been defined as a remarkable syndrome of correlated genetic traits that are produced in some particular crosses between certain strains. The present study main objective was classify recently collected Drosophila melanogaster strains in relation to P element activity and regulatory capacity. Our results to natural populations trapped from Rio Grande do Sul, Brazil and Colombia shows that it fell on Q class, since all examinated strains has showed P elements by molecular analysis and low P activity. In the same way, these strains shows low susceptibility to P element action. The bigger values found in the colombian population are in agreement with the clinal hypothesis to P element activity.


1987 ◽  
Vol 49 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Trudy F. C. Mackay

SummaryP-element mutagenesis was used to contaminate M-strain second chromosomes with P elements. The effect of P-element transposition on abdominal and sternopleural bristle scores and on female productivity was deduced by comparing the distributions of these quantitative traits among the contaminated second-chromosome lines with a control population of M-strain second-chromosome lines free of P elements. Estimates of P-element-induced mutational variance, Vm, for these characters are very high, and mutational ‘heritabilities’ (Vm/Ve, the ratio of mutational variance to environmental variance) are of the same order as heritabilities of these traits from natural populations. P-element-induced mutational variance of abdominal bristle score is roughly two orders of magnitude greater than spontaneous and X-ray-induced Vm/Ve for this trait.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Joseph C L Fong

Abstract Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry+, Δ2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry+, Δ2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA.


Sign in / Sign up

Export Citation Format

Share Document