scholarly journals Disgenesia do híbrido em populações naturais de Drosophila melanogaster.

1999 ◽  
Vol 21 (21) ◽  
pp. 51 ◽  
Author(s):  
Chirlei Cintia Klein ◽  
Liliana Essi ◽  
Ronaldo Medeiros Golombieski ◽  
Élgion Lúcio da Silva Loreto

Hybrid dysgenesis has been defined as a remarkable syndrome of correlated genetic traits that are produced in some particular crosses between certain strains. The present study main objective was classify recently collected Drosophila melanogaster strains in relation to P element activity and regulatory capacity. Our results to natural populations trapped from Rio Grande do Sul, Brazil and Colombia shows that it fell on Q class, since all examinated strains has showed P elements by molecular analysis and low P activity. In the same way, these strains shows low susceptibility to P element action. The bigger values found in the colombian population are in agreement with the clinal hypothesis to P element activity.

Genome ◽  
1987 ◽  
Vol 29 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Allen G. Good ◽  
Donal A. Hickey

The rapid increase in the frequency of P elements in natural populations of Drosophila melanogaster has led to the suggestion that these elements can spread in nature through replicative transposition. In an attempt to model the introduction of a small number of P flies into an M population we backcrossed P flies and their offspring to M flies. Two components of dysgenesis, P element activity and P element copy number (measured by DNA hybridization), were monitored each generation. In these experiments P elements were not capable of spreading rapidly enough to maintain 30–50 copies per fly and were rapidly lost from the population. We also found that the reduction in a fly's ability to induce gonadal dysgenesis was matched by an equivalent reduction in P element copy number as measured by DNA hybridization. These results are discussed in terms of the conventional mechanisms of selection or segregation; the conclusion is that there are conditions under which P elements can be lost from a population. Key words: hybrid dysgenesis, P element, transposable elements, Drosophila.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


1992 ◽  
Vol 59 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Walter F. Eanes ◽  
Cedric Wesley ◽  
Brian Charlesworth

SummaryThe accumulation of a transposable element inside chromosomal inversions is examined theoretically by a mathematical model, and empirically by counts of P elements associated with inversion polymorphisms in natural populations of Drosophila melanogaster. The model demonstrates that, if heterozygosity for an inversion effectively reduces element associated production of detrimental chromosome rearrangements, a differential accumulation of elements is expected, with increased copy number inside the minority inversion. Several-fold differential accumulations are possible with certain parameter values. We present data on P element counts for inversion polymorphisms on all five chromosome arms of 157 haploid genomes from two African populations. Our observations show significantly increased numbers of elements within the regions associated with the least common, or minority arrangements, in natural inversion polymorphisms.


2015 ◽  
Author(s):  
Robert Kofler ◽  
Tom Hill ◽  
Viola Nolte ◽  
Andrea Betancourt ◽  
Christian Schlötterer

The P-element is one of the best understood eukaryotic transposable elements. It invadedDrosophila melanogasterpopulations within a few decades, but was thought to be absent from close relatives, includingD. simulans. Five decades after the spread inD. melanogaster, we provide evidence that the P-element has also invadedD. simulans. P-elements inD. simulansappear to have been acquired recently fromD. melanogasterprobably via a single horizontal transfer event. Expression data indicate that the P-element is processed in the germline ofD. simulans, and genomic data show an enrichment of P-element insertions in putative origins of replication, similar to that seen inD. melanogaster. This ongoing spread of the P-element in natural populations provides an unique opportunity to understand the dynamics of transposable element spreads and the associated piRNA defense mechanisms.


1990 ◽  
Vol 56 (1) ◽  
pp. 3-14 ◽  
Author(s):  
C. Biémont ◽  
S. Ronsseray ◽  
D. Anxolabéhère ◽  
H. Izaabel ◽  
C. Gautier

SummarySeventeen highly-inbred lines of Drosophila melanogaster extracted from an M′ strain (in the P/M system of hybrid dysgenesis) were studied for their cytotype and the number and chromosomal location of complete and defective P elements. While most lines were of M cytotype, three presented a P cytotype (the condition that represses P-element activity) and one was intermediate between M and P. All lines were found to possess K.P elements and only eight to bear full-sized P elements. Only the lines with full-sized P elements showed detectable changes in their P-insertion pattern over generations; their rates of gain and of loss of P-element sites were equal to 0·12 and 0·09 per genome, per generation, respectively. There was no correlation between these two rates within lines, suggesting independent transpositions and excisions in the inbred genomes. The results of both Southern blot analysis and in situ hybridization of probes made from left and right sides of the P element strongly suggested the presence of a putative complete P element in region 1A of the X chromosome in the three lines with a P cytotype; the absence of P copy in this 1A region in lines with an M cytotype, favours the hypothesis that the P element inserted in 1A could play a major role in the P-cytotype determination. Insertion of a defective 2 kb P element was also observed in region 93F in 9 of the 13 M lines. The regulation of the P-element copy number in our lines appeared not to be associated with the ratio of full-length and defective P elements.


1986 ◽  
Vol 48 (2) ◽  
pp. 77-87 ◽  
Author(s):  
Trudy F. C. Mackay

SummaryP element mutagenesis was used to contaminate M strain second chromosomes with P elements. The contaminated lines were compared to uncontaminated control lines for homozygous and heterozygous fitness and its components. Mean homozygous fitness, viability and fertility of chromosome lines contaminated with P elements is decreased relative to the uncontaminated control lines by, respectively, 55, 28 and 40%. Variance among contaminated homozygous lines of total fitness increases by a factor of 1·5, variance of viability by a factor of 5·9, and variance of fertility by a factor of 1·9, compared to variance of these traits among the population of uncontaminated homozygous chromosomes. Estimates of P-element-induced mutational variance among second chromosome lines for homozygous fitness, viability and fertility are, respectively, 2 × 10−2, 5 × 10−2 and 2 × 10−2. This magnitude of mutational effect is equivalent, in terms of incidence of induced recessive lethal chromosomes and D:L ratio, to a dose of approximately 1·0–2·5 × 10−3 m EMS. The distributions of fitness traits among M-derived second chromosome homozygous lines contaminated with P elements are remarkably similar in many regards to distributions of fitness and viability of chromosomal homozygotes derived from natural Drosophila populations. It is possible that a proportion of the fitness variation previously observed (reviewed by Simmons & Crow, 1977) following homozygosis of wild chromosomes was not present in the natural populations, but was generated by P-element transposition during the chromosome extraction procedure. P-element-induced fitness mutations appear to be completely recessive. Implications for models of evolution of transposable elements are discussed.


Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 121-137
Author(s):  
M A O'Brien ◽  
M S Roberts ◽  
P H Taghert

Abstract We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes.


1987 ◽  
Vol 49 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Trudy F. C. Mackay

SummaryP-element mutagenesis was used to contaminate M-strain second chromosomes with P elements. The effect of P-element transposition on abdominal and sternopleural bristle scores and on female productivity was deduced by comparing the distributions of these quantitative traits among the contaminated second-chromosome lines with a control population of M-strain second-chromosome lines free of P elements. Estimates of P-element-induced mutational variance, Vm, for these characters are very high, and mutational ‘heritabilities’ (Vm/Ve, the ratio of mutational variance to environmental variance) are of the same order as heritabilities of these traits from natural populations. P-element-induced mutational variance of abdominal bristle score is roughly two orders of magnitude greater than spontaneous and X-ray-induced Vm/Ve for this trait.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Joseph C L Fong

Abstract Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry+, Δ2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry+, Δ2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA.


Sign in / Sign up

Export Citation Format

Share Document