scholarly journals GENETICS OF NATURAL POPULATIONS. XVII. PROOF OF OPERATION OF NATURAL SELECTION IN WILD POPULATIONS OF DROSOPHILA PSEUDOOBSCURA

Genetics ◽  
1948 ◽  
Vol 33 (6) ◽  
pp. 537-547
Author(s):  
Theodosius Dobzhansky ◽  
Howard Levene
2019 ◽  
Author(s):  
Melanie J. Heckwolf ◽  
Britta S. Meyer ◽  
Robert Häsler ◽  
Marc P. Höppner ◽  
Christophe Eizaguirre ◽  
...  

AbstractWhile environmentally inducible epigenetic marks are discussed as one mechanism of transgenerational plasticity, environmentally stable epigenetic marks emerge randomly. When resulting in variable phenotypes, stable marks can be targets of natural selection analogous to DNA sequence-based adaptation processes. We studied both postulated pathways in natural populations of three-spined sticklebacks (Gasterosteus aculeatus) and sequenced their methylomes and genomes across a salinity cline. Consistent with local adaptation, populations showed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. In a two-generation experiment, 62% of these pop-DMS were insensitive to salinity manipulation, suggesting that they could be stable targets for natural selection. Two-thirds of the remaining inducible pop-DMS became more similar to patterns detected in wild populations from the corresponding salinity, and this pattern accentuated over consecutive generations, indicating a mechanism of adaptive transgenerational plasticity. Natural DNA methylation patterns can thus be attributed to two epigenetic pathways underlying the rapid emergence of adaptive phenotypes in the face of environmental change.


1978 ◽  
Vol 5 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Gabor Vida

Increasing evidence indicates that a major portion of the enormous amount of polymorphism present in natural populations is maintained by natural selection. This polymorphism is necessary for adaptation. In the absence of a suitable amount of genetic diversity, a species will tend to die out in a changing environment.The genetic diversity of most species has been considerably reduced in historical times. Breeding for uniformity, and reduction in the number and size of wild populations, are largely responsible for this loss. Replacement of a natural forest ecosystem by modern agriculture reduces the genetic diversity by three orders of magnitude at the very least. A comparison of the estimated prehistoric and present amount of genetic diversity leads to the alarming conclusion that we may already have lost as much as 90% of the total genetic diversity of the biosphere. Further loss is expected because of the rapid growth of human population.


2019 ◽  
Author(s):  
Kieran Samuk ◽  
Brenda Manzano-Winkler ◽  
Kathryn R. Ritz ◽  
Mohamed A.F. Noor

AbstractWhile recombination is widely recognized to be a key modulator of numerous evolutionary phenomena, we have a poor understanding of how recombination rate itself varies and evolves within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8000 individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for which we then quantified crossovers. Interestingly, variation in recombination rate within and between populations largely manifested as differences in genome-wide recombination rate rather than remodeling of the local recombination landscape. Comparing populations, we discovered individuals from the Utah population displayed on average 8% higher crossover rates than the Arizona population, a statistically significant difference. Using a QST-FST analysis, we found that this difference in crossover rate was dramatically higher than expected under neutrality, indicating that this difference may have been driven by natural selection. Finally, using a combination of short and long read whole-genome sequencing, we found no significant association between crossover rate and structural variation at the 200-400kb scale. Our results demonstrate that (1) there is abundant variation in genome-wide crossover rate in natural populations (2) interpopulation differences in recombination rate may be the result of local adaptation, and (3) the observed variation among individuals in recombination rate is primarily driven by global regulators of crossover rate, with little detected variation in recombination rate among strains across specific tracts of individual chromosomes.


2018 ◽  
Vol 194 ◽  
pp. 188-192
Author(s):  
D. I. Shokasheva

Natural populations of crayfish are in depression in Russia and local species are not cultivated. In this situation, experimental cultivation of allochtonous australian crayfish Cherax quadricarinatus is conducted. This species is distinguished by high reproductive abilities and good consumer properties. It has domesticated in Russia spontaneously and produced 9–10 generations in Astrakhan Region. Certain natural selection in the process of domestication provides adaptive ability of this species to local environments and its capabil­ity to reproduce a viable progeny, so there is no doubts in good prospects of its cultivation in industrial conditions.


Author(s):  
Rubén Sancho ◽  
Ana Guillem-Amat ◽  
Elena López-Errasquín ◽  
Lucas Sánchez ◽  
Félix Ortego ◽  
...  

AbstractThe sterile insect technique (SIT) is widely used in integrated pest management programs for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata. The genetic interactions between the released individuals from the genetic sexing strains (GSS), used for SIT applications worldwide, and wild individuals have not been studied. Under the hypothesis that a number of Vienna GSS individuals released to the field might not be completely sterile and may produce viable offspring, we have analyzed medfly Spanish field populations to evaluate the presence of Vienna strain genetic markers. To this goal, we have used contrasted nuclear and mitochondrial genetic markers, and two novel sets of nuclear polymorphisms with the potential to be markers to discriminate between Vienna and wild individuals. Nuclear Vienna markers located on the 5th chromosome of Vienna males have been found in 2.2% (19 from 875) of the Spanish wild medfly females captured at the area where SIT is applied. In addition, a female-inherited mitochondrial Vienna marker has been found in two from the 19 females showing nuclear Vienna markers. The detection of several of these markers in single individuals represents evidence of the introgression of Vienna strain into natural populations. However, alternative explanations as their presence at low frequency in wild populations in the studied areas cannot be fully discarded. The undesired release of non-fully sterile irradiated GSS individuals into the field and their interactions with wild flies, and the potential environmental implications should be taken into account in the application of the SIT.


Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 569-589
Author(s):  
Martin L Tracey ◽  
Francisco J Ayala

ABSTRACT Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.


Sign in / Sign up

Export Citation Format

Share Document