scholarly journals HETEROCHROMATIC EFFECTS ON THE BEHAVIOR OF REVERSED ACROCENTRIC COMPOUND-X CHROMOSOMES IN DROSOPHILA MELANOGASTER

Genetics ◽  
1979 ◽  
Vol 91 (3) ◽  
pp. 537-551
Author(s):  
L Sandler ◽  
Joseph O'Tousa

ABSTRACT Previous studies of reversed acrocentric compound-X chromosomes suggested peculiar influences of heterochromatin on both the synthesis and meiotic behavior of such compounds. It seemed, with respect to synthesis, that the long arm of the Y chromosome on an X.YL chromosome was necessary in order for the heterochromatic exchange giving rise to reversed acrocentrics to occur, even though YL itself did not participate in the compound-generating event. With respect to behavior, the resulting compounds appeared, presumably as a consequence of their singular generation, to contain an interstitial heterochromatic region that caused the distribution of exchanges between the elements of the compound to be abnormal (many zero and two-exchange tetrads with few, if any, single-exchange tetrads). Removing the interstitial heterochromatin (or, curiously, appending YL as a second arm of the compound) eliminated the recombinational anomalies and resulted in typical tetrad distributions.—We provide evidence that these peculiarities, while presumably real, were likely the consequence of a special X.YL chromosome that was used to synthesize the reversed acrocentrics examined in the early studies and are not general properties of either reversed acrocentric compounds or of interstitial heterochromatin. However, we show that specific heterochromatic regions do, in fact, profoundly influence the behavior of (apparently all) reversed acrocentric compound-X chromosomes. In particular, we demonstrate that specific portions of the Y chromosome and of the basal X-chromosome heterochromatin, when present as homologs for reversed acrocentric compounds, markedly and coordinately increase bath the frequency of exchange between the elements of the compound and the fertility (egg production) of compound-bearing females. It is, we suppose, some aspect of this heterochromatic effect, produced by the% special X.YL chromosome, that caused the earlier-analyzed compounds to exhibit the observed anomalies.

Genetics ◽  
1977 ◽  
Vol 85 (4) ◽  
pp. 721-732
Author(s):  
William Chapco

ABSTRACT Unmarked segments within the X chromosomes of four different Drosophila melanogaster isogenic lines were assessed with respect to egg production. By making a series of crosses among original and derived recombinant lines, it was possible to estimate parameters representing additive, dominance and interaction effects of the segments. It was shown that whereas most of the segments were additive for egg production when homozygous, they all displayed dominance in the heterozygous condition. Two of the strains were characterized by intersegmental interaction. A possible position effect was detected for these same two strains, with flies in the coupling phase laying more eggs than those in the repulsion configuration. There was no apparent relationship between the number of eggs laid and the amount of heterozygosity within the X chromosome.


Genetics ◽  
1979 ◽  
Vol 92 (2) ◽  
pp. 595-601
Author(s):  
William Chapco

ABSTRACT Unmarked segments within the X chromosomes of four different Drosophila melanogaster isogenic lines were assessed with respect to egg-to-adult viability. The results were compared with those of an earlier study involving egg production. All segments influence both traits, but to extents that are dependent upon the strains being compared. Segmental effects are also a function of the genetical background, which, in this case, constitutes material within the same chromowme. With respect to both traits, the segments are not necessarily parallel in their effects. A segment that increases fecundity, for example, may or may not augment viability. The possibility of manipulating chromosomal segments to improve "yield" in organisms is explored.


Genetics ◽  
1985 ◽  
Vol 111 (3) ◽  
pp. 487-494
Author(s):  
C Malva ◽  
T Labella ◽  
A Manzi ◽  
G Salzano ◽  
G Lavorgna ◽  
...  

ABSTRACT The authors have studied the interaction between the abnormal oocyte mutation and an inversion of the X chromosome, In(1)sc  4, which has a proximal breakpoint in or near the heterochromatic region (ABO) that maternally interacts with the abo product. It has been demonstrated that the presence of X chromosomes carrying this inversion, besides a marked increase in the severity of the maternal effect of the abo mutation, produces a zygotic effect resulting in the lethality of the progeny of stocks homozygous for abo and sc  4. These results indicate that the sc  4 inversion carries an abnormal region indispensable for the development of abo zygotes from sc  4;abo mothers.


Genetics ◽  
1989 ◽  
Vol 122 (1) ◽  
pp. 81-86 ◽  
Author(s):  
E S Walker ◽  
T W Lyttle ◽  
J C Lucchesi

Abstract In order to test whether the meiotic drive system Segregation distorter (SD) can operate on the X chromosome to exclude it from functional sperm, we have transposed the Responder locus (Rsp) to this element. This was accomplished by inducing detachments of a compound-X chromosome in females carrying a Y chromosome bearing a Rsps allele. Six Responder-sensitive-bearing X chromosomes, with kappa values ranging from 0.90 to 1.00, were established as permanent lines. Two of these have been characterized more extensively with respect to various parameters affecting meiotic drive. SD males with a Responder-sensitive X chromosome produce almost exclusively male embryos, while those with a Rsp-Y chromosome produce almost exclusively female embryos. This provides a genetic system of great potential utility for the study of early sex-specific differentiation events as it allows the collection of large numbers of embryos of a given sex.


Genetics ◽  
1982 ◽  
Vol 101 (3-4) ◽  
pp. 461-476
Author(s):  
Todd R Laverty ◽  
J K Lim

ABSTRACT In this study, we show that at least one lethal mutation at the 3F-4A region of the X chromosome can generate an array of chromosome rearrangements, all with one chromosome break in the 3F-4A region. The mutation at 3F-4A (secondary mutation) was detected in an X chromosome carrying a reverse mutation of an unstable lethal mutation, which was mapped in the 6F1-2 doublet (primary mutation). The primary lethal mutation at 6F1-2 had occurred in an unstable chromosome (Uc) described previously (Lim 1979). Prior to reversion, the 6F1-2 mutation had generated an array of chromosome rearrangements, all having one break in the 6F1-2 doublet (Lim 1979, 1980). In the X chromosomes carrying the 3F-4A secondary lethal mutation the 6F1-2 doublet was normal and stable, as was the 3F-4A region in the X chromosome carrying the primary lethal mutation. The disappearance of the instability having a set of genetic properties at one region (6F1-2) accompanied by its appearance elsewhere in the chromosome (3F-4A) implies that a transposition of the destabilizing element took place. The mutant at 3F-4A and other secondary mutants exhibited all but one (reinversion of an inversion to the normal sequence) of the eight properties of the primary lethal mutations. These observations support the view that a transposable destabilizing element is responsible for the hypermutability observed in the unstable chromosome and its derivaties.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 627-636
Author(s):  
C Q Lai ◽  
T F Mackay

Abstract To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.


Development ◽  
1987 ◽  
Vol 101 (Supplement) ◽  
pp. 3-4
Author(s):  
Anne McLaren

In the first two papers of this volume, the genetic control of sex determination in Caenorhabditis and Drosophila is reviewed by Hodgkin and by Nöthiger & Steinmarin-Zwicky, respectively. Sex determination in both cases depends on the ratio of X chromosomes to autosomes, which acts as a signal to a cascade of règulatory genes located either on autosomes or on the X chromosome. The state of activity of the last gene in the sequence determines phenotypic sex. In the third paper, Erickson & Tres describe the structure of the mouse Y chromosome and the polymorphisms that have been detected in different mouse species and strains. As in all mammals, the Y carries the primary male-determining locus; autosomal genes may also be involved in sex determination, but they must act down-stream from the Y-linked locus.


2020 ◽  
Vol 12 (558) ◽  
pp. eaaz5677 ◽  
Author(s):  
Emily J. Davis ◽  
Lauren Broestl ◽  
Samira Abdulai-Saiku ◽  
Kurtresha Worden ◽  
Luke W. Bonham ◽  
...  

A major sex difference in Alzheimer’s disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 95-103
Author(s):  
R J Morrison ◽  
J D Raymond ◽  
J R Zunt ◽  
J K Lim ◽  
M J Simmons

Abstract Males carrying different X chromosomes were tested for the ability to produce daughters with attached-X chromosomes. This ability is characteristic of males carrying an X chromosome derived from 59b-z, a multiply marked X chromosome, and is especially pronounced in males carrying the unstable 59b-z chromosomes Uc and Uc-lr. Recombination experiments with one of the Uc-lr chromosomes showed that the formation of compound chromosomes depends on two widely separated segments. One of these is proximal to the forked locus and is probably proximal to the carnation locus. This segment may contain the actual site of chromosome attachment. The other essential segment lies between the crossveinless and vermilion loci and may contain multiple factors that influence the attachment process.


Sign in / Sign up

Export Citation Format

Share Document