segregation distorter
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Beatriz Navarro-Dominguez ◽  
Ching-Ho Chang ◽  
Cara Brand ◽  
Christina Muirhead ◽  
Daven Presgraves ◽  
...  

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation to gain preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing alternative alleles. While at least two loci are important for male drive- the driver and the target- linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversion on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over and with wildtype chromosomes only via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


2021 ◽  
Vol 288 (1959) ◽  
Author(s):  
Thomas A. Keaney ◽  
Therésa M. Jones ◽  
Luke Holman

The Segregation Distorter ( SD ) allele found in Drosophila melanogaster distorts Mendelian inheritance in heterozygous males by causing developmental failure of non- SD spermatids, such that greater than 90% of the surviving sperm carry SD . This within-individual advantage should cause SD to fix, and yet SD is typically rare in wild populations. Here, we explore whether this paradox can be resolved by sexual selection, by testing if males carrying three different variants of SD suffer reduced pre- or post-copulatory reproductive success. We find that males carrying the SD allele are just as successful at securing matings as control males, but that one SD variant ( SD-5 ) reduces sperm competitive ability and increases the likelihood of female remating. We then used these results to inform a theoretical model; we found that sexual selection could limit SD to natural frequencies when sperm competitive ability and female remating rate equalled the values observed for SD-5 . However, sexual selection was unable to explain natural frequencies of the SD allele when the model was parameterized with the values found for two other SD variants, indicating that sexual selection alone is unlikely to explain the rarity of SD .


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009662
Author(s):  
Marion Herbette ◽  
Xiaolu Wei ◽  
Ching-Ho Chang ◽  
Amanda M. Larracuente ◽  
Benjamin Loppin ◽  
...  

Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.


2021 ◽  
Author(s):  
Marion Herbette ◽  
Xiaolu Wei ◽  
Ching-Ho Chang ◽  
Amanda M Larracuente ◽  
Benjamin Loppin ◽  
...  

Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.


2019 ◽  
Vol 33 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Heidi W. S. Wong ◽  
Luke Holman

2019 ◽  
Vol 286 (1911) ◽  
pp. 20191534 ◽  
Author(s):  
Jenna Kay Lea ◽  
Robert L. Unckless

Most organisms are constantly adapting to pathogens and parasites that exploit their host for their own benefit. Less studied, but perhaps more ubiquitous, are intragenomic parasites or selfish genetic elements. These include transposable elements, selfish B chromosomes and meiotic drivers that promote their own replication without regard to fitness effects on hosts. Therefore, intragenomic parasites are also a constant evolutionary pressure on hosts. Gamete-killing meiotic drive elements are often associated with large chromosomal inversions that reduce recombination between the drive and wild-type chromosomes. This reduced recombination is thought to reduce the efficacy of selection on the drive chromosome and allow for the accumulation of deleterious mutations. We tested whether gamete-killing meiotic drive chromosomes were associated with reduced immune defence against two bacterial pathogens in three species of Drosophila . We found little evidence of reduced immune defence in lines with meiotic drive. One line carrying the Drosophila melanogaster autosomal Segregation Distorter did show reduced defence, but we were unable to attribute that reduced defence to either genotype or immune gene expression differences. Our results suggest that though gamete-killing meiotic drive chromosomes probably accumulate deleterious mutations, those mutations do not result in reduced capacity for immune defence.


Sign in / Sign up

Export Citation Format

Share Document