DENSITY-DEPENDENT FERTILITY SELECTION IN EXPERIMENTAL POPULATIONS OF DROSOPHILA MELANOGASTER

Genetics ◽  
1981 ◽  
Vol 98 (4) ◽  
pp. 849B-869
Author(s):  
Andrew G Clark ◽  
Marcus W Feldman

ABSTRACT The effects of larval density on components of fertility fitness were investigated with two mutant lines of Drosophila melanogaster. The differences in adult body weight, wing length, larval survivorship and development time verified that flies reared at high density were resource limited. Experimental results indicate that: (1) relative fecundities of both sexes show density-dependent effects, (2) there is a strong density effect on male and female mating success, and (3) in general, there is a reduction in fecundity differences between genotypes at high density. These results imply that it may be important to consider fertility in models of density-dependent natural selection.

2018 ◽  
Author(s):  
Joseph B. Deas ◽  
Leo Blondel ◽  
Cassandra G. Extavour

ABSTRACTAncestral environmental conditions can impact descendant phenotypes through a variety of epigenetic mechanisms. Previous studies on transgenerational effects in Drosophila melanogaster suggest that parental nutrition may affect the body size, developmental duration, and egg size of the next generation. However, it is unknown whether these effects on phenotype remain stable across generations, or if specific generations have general responses to ancestral diet. In the current study, we examined the effect on multiple life history phenotypes of changing diet quality across three generations. Our analysis revealed unforeseen patterns in how phenotypes respond to dietary restriction. Our generalized linear model showed that when considering only two generations, offspring phenotypes were primarily affected by their own diet, and to a lesser extent by the diet of their parents or the interaction between the two generations. Surprisingly, however, when considering three generations, offspring phenotypes were primarily impacted by their grandparents’ diet and their own diet. Interactions amongst different generations’ diets affected development time, egg volume, and pupal mass more than ovariole number or wing length. Further, pairwise comparisons of diet groups from the same generation revealed commonalities in strong responses to rich vs. poor diet: ovariole number, pupal mass, and wing length responded more strongly to poor diet than to rich diet, while development time responded strongly to both rich and poor diets. To improve investigations into the mechanisms and consequences of transgenerational, epigenetic inheritance, future studies should closely examine how phenotypes change across a higher number of generations, and consider responses to broader variability in diet treatments.


Genetics ◽  
1973 ◽  
Vol 75 (4) ◽  
pp. 679-693
Author(s):  
M Bos ◽  
W Scharloo

ABSTRACT Disruptive and stabilizing selection were applied to thorax and wing length in Drosophila melanogaster. Disruptive selection with negative assortative mating (D-) practiced on thorax length caused a large increase of the phenotypic variance; practiced on wing length the increase was less striking. Disruptive selection with random mating (DR) caused in most lines only a temporary increase in phenotypic variance, but mean values increased considerably. Stabilizing selection (S) on thorax length or wing length did not decrease the phenotypic variance, but the mean value of the selected character declined.—The proportion of flies emerging decreased in all lines, while development time increased. Variance of development time increased in the D--lines. In both D--lines the frequency of flies with an abnormal number of scutellars was high (> 60% in one of the lines) and there was a temporary increase in abnormal segmentation of the abdomen.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20182778 ◽  
Author(s):  
Joseph B. Deas ◽  
Leo Blondel ◽  
Cassandra G. Extavour

Ancestral environmental conditions can impact descendant phenotypes through a variety of epigenetic mechanisms. Previous studies on transgenerational effects in Drosophila melanogaster suggest that parental nutrition may affect the body size, developmental duration and egg size of the next generation. However, it is unknown whether these effects on phenotype remain stable across generations, or if specific generations have general responses to ancestral diet. In the current study, we examined the effect on multiple life-history phenotypes of changing diet quality across three generations. Our analysis revealed unforeseen patterns in how phenotypes respond to dietary restriction. Our generalized linear model showed that when considering only two generations, offspring phenotypes were primarily affected by their own diet, and to a lesser extent by the diet of their parents or the interaction between the two generations. Surprisingly, however, when considering three generations, offspring phenotypes were primarily impacted by their grandparents' diet and their own diet. Interactions among different generations’ diets affected development time, egg volume and pupal mass more than ovariole number or wing length. Furthermore, pairwise comparisons of diet groups from the same generation revealed commonalities in strong responses to rich versus poor diet: ovariole number, pupal mass and wing length responded more strongly to poor diet than to rich diet, while development time responded strongly to both rich and poor diets. To improve investigations into the mechanisms and consequences of transgenerational, epigenetic inheritance, future studies should closely examine how phenotypes change across a higher number of generations, and consider responses to broader variability in diet treatments.


Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 659-666 ◽  
Author(s):  
A C James ◽  
R B Azevedo ◽  
L Partridge

Abstract We examined 20 Drosophila melanogaster populations collected from a 2600-km north-south transect in Australia. In laboratory culture at constant temperature and standard larval density, a genetic cline in thorax length and wing area was found, with both traits increasing with latitude. The cline in wing area was based on clines in both cell size and cell number, but was primarily determined by changes in cell number. Body size and larval development time were not associated among populations. We discuss our results in the context of selection processes operating in natural and experimental populations.


2020 ◽  
Author(s):  
Sudhakar Krittika ◽  
Pankaj Yadav

AbstractDietary Restriction (DR) via protein restriction (PR) has become an inquisitive field and has established feasible trade-offs between various fitness and behavioral traits in Drosophila melanogaster to understand lifespan or aging in a nutritionally challenged environment. However, the phenotypes of body size, weight and wing length respond according to factors such as flies’ genotype, environmental exposure, and parental diet. Hence, understanding the long-term effect of PR on these phenotypes is essential. Here, we demonstrate the effect of PR diet on body size, weight and normal & dry wing length of flies subjected to PR50 and PR70 (50% and 70% protein content present in control food respectively) for 20 generations from pre-adult stage. We found that PR fed flies have lower body weight, relative water content (in males), unaltered (PR50%) and higher (PR70%) relative fat content in males, smaller normal and dry body size as compared to control and generations 1 and 2. Interestingly, wing size and pupal size of PR flies are smaller and showed significant effects of diet and generation. Thus, these traits are sex and generation dependent along with an interaction of diet, which is capable of modulating these results variably. Our study suggests that trans-generational effect is more prominent in influencing these traits and wing length might not be a predictor for body size. Taken together, the trans-generational effect of PR on fitness and fitness-related traits might be helpful to understand the underpinning mechanisms of evolution and aging in fruit flies D. melanogaster.Summary statementTwenty generations of protein restricted diet have a diet and generation dependent effect on adult body size, wing length and body weight.


Sign in / Sign up

Export Citation Format

Share Document