Trans-Ethnic Meta-Analysis of Interactions Between Genetics and Early-Life Socioeconomic Context on Memory Performance and Decline in Older Americans

Author(s):  
Jessica D Faul ◽  
Minjung Kho ◽  
Wei Zhao ◽  
Kalee E Rumfelt ◽  
Miao Yu ◽  
...  

Abstract Background Later-life cognitive function is influenced by genetics as well as early- and later-life socioeconomic context. However, few studies have examined the interaction between genetics and early childhood factors. Methods Using gene-based tests (interaction sequence kernel association test [iSKAT]/iSKAT optimal unified test), we examined whether common and/or rare exonic variants in 39 gene regions previously associated with cognitive performance, dementia, and related traits had an interaction with childhood socioeconomic context (parental education and financial strain) on memory performance or decline in European ancestry (EA, N = 10 468) and African ancestry (AA, N = 2 252) participants from the Health and Retirement Study. Results Of the 39 genes, 22 in EA and 19 in AA had nominally significant interactions with at least one childhood socioeconomic measure on memory performance and/or decline; however, all but one (father’s education by solute carrier family 24 member 4 [SLC24A4] in AA) were not significant after multiple testing correction (false discovery rate [FDR] < .05). In trans-ethnic meta-analysis, 2 genes interacted with childhood socioeconomic context (FDR < .05): mother’s education by membrane-spanning 4-domains A4A (MS4A4A) on memory performance, and father’s education by SLC24A4 on memory decline. Both interactions remained significant (p < .05) after adjusting for respondent’s own educational attainment, apolipoprotein-ε4 allele (APOE ε4) status, lifestyle factors, body mass index, and comorbidities. For both interactions in EA and AA, the genetic effect was stronger in participants with low parental education. Conclusions Examination of common and rare variants in genes discovered through genome-wide association studies shows that childhood context may interact with key gene regions to jointly impact later-life memory function and decline. Genetic effects may be more salient for those with lower childhood socioeconomic status.

2020 ◽  
Vol 4 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Zhaohui Du ◽  
Niels Weinhold ◽  
Gregory Chi Song ◽  
Kristin A. Rand ◽  
David J. Van Den Berg ◽  
...  

Abstract Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2 GWASs of MM in 1813 cases and 8871 controls and conducted an admixture mapping scan to identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P < 1 × 10−6; however, no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency, and 9 replicated at P < .05 in AA individuals. In 8 regions, we identified markers that better capture MM risk in persons with AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95% confidence interval, 1.56-2.11) increased MM risk compared with those with average risk (25%-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P = 5.1 × 10−12). Our study shows that common genetic variation contributes to MM risk in individuals with AA.


2018 ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

AbstractPost-traumatic stress disorder (PTSD) is a common and debilitating disorder. The risk of PTSD following trauma is heritable, but robust common variants have yet to be identified by genome-wide association studies (GWAS). We have collected a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls. We first demonstrate significant genetic correlations across 60 PTSD cohorts to evaluate the comparability of these phenotypically heterogeneous studies. In this largest GWAS meta-analysis of PTSD to date we identify a total of 6 genome-wide significant loci, 4 in European and 2 in African-ancestry analyses. Follow-up analyses incorporated local ancestry and sex-specific effects, and functional studies. Along with other novel genes, a non-coding RNA (ncRNA) and a Parkinson’s Disease gene,PARK2, were associated with PTSD. Consistent with previous reports, SNP-based heritability estimates for PTSD range between 10-20%. Despite a significant shared liability between PTSD and major depressive disorder, we show evidence that some of our loci may be specific to PTSD. These results demonstrate the role of genetic variation contributing to the biology of differential risk for PTSD and the necessity of expanding GWAS beyond European ancestry.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

Abstract The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.


2018 ◽  
Author(s):  
David M. Howard ◽  
Mark J. Adams ◽  
Toni-Kim Clarke ◽  
Jonathan D. Hafferty ◽  
Jude Gibson ◽  
...  

AbstractMajor depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.


2020 ◽  
Author(s):  
Katherina C. Chua ◽  
Chenling Xiong ◽  
Carol Ho ◽  
Taisei Mushiroda ◽  
Chen Jiang ◽  
...  

AbstractMicrotubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genome-wide association studies (GWAS) from two clinical cohorts treated with MTAs (CALGB 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1; e.g., rs74497159, βCALGB40101 per allele log hazard ratio (95% CI) = 0.591 (0.254 - 0.928), βCALGB40502 per allele log hazard ratio (95% CI) = 0.693 (0.334 - 1.053); PMETA = 3.62×10−7) were the most highly ranked associations based on P-values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in iPSC-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mathias Gorski ◽  
Peter J. van der Most ◽  
Alexander Teumer ◽  
Audrey Y. Chu ◽  
Man Li ◽  
...  

Abstract HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10−8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.


2018 ◽  
Vol 28 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Sara L Pulit ◽  
Charli Stoneman ◽  
Andrew P Morris ◽  
Andrew R Wood ◽  
Craig A Glastonbury ◽  
...  

Abstract More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
James S Floyd ◽  
Colleen Sitlani ◽  
Christy L Avery ◽  
Eric A Whitsel ◽  
Leslie Lange ◽  
...  

Introduction: Sulfonylureas are a commonly-used class of diabetes medication that can prolong the QT-interval, which is a leading cause of drug withdrawals from the market given the possible risk of life-threatening arrhythmias. Previously, we conducted a meta-analysis of genome-wide association studies of sulfonylurea-genetic interactions on QT interval among 9 European-ancestry (EA) cohorts using cross-sectional data, with null results. To improve our power to identify novel drug-gene interactions, we have included repeated measures of medication use and QT interval and expanded our study to include several additional cohorts, including African-American (AA) and Hispanic-ancestry (HA) cohorts with a high prevalence of sulfonylurea use. To identify potentially differential effects on cardiac depolarization and repolarization, we have also added two phenotypes - the JT and QRS intervals, which together comprise the QT interval. Hypothesis: The use of repeated measures and expansion of our meta-analysis to include diverse ancestry populations will allow us to identify novel pharmacogenomic interactions for sulfonylureas on the ECG phenotypes QT, JT, and QRS. Methods: Cohorts with unrelated individuals used generalized estimating equations to estimate interactions; cohorts with related individuals used mixed effect models clustered on family. For each ECG phenotype (QT, JT, QRS), we conducted ancestry-specific (EA, AA, HA) inverse variance weighted meta-analyses using standard errors based on the t-distribution to correct for small sample inflation in the test statistic. Ancestry-specific summary estimates were combined using MANTRA, an analytic method that accounts for differences in local linkage disequilibrium between ethnic groups. Results: Our study included 65,997 participants from 21 cohorts, including 4,020 (6%) sulfonylurea users, a substantial increase from the 26,986 participants and 846 sulfonylureas users in the previous meta-analysis. Preliminary ancestry-specific meta-analyses have identified genome-wide significant associations (P < 5х10–8) for each ECG phenotype, and analyses with MANTRA are in progress. Conclusions: In the setting of the largest collection of pharmacogenomic studies to date, we used repeated measurements and leveraged diverse ancestry populations to identify new pharmacogenomic loci for ECG traits associated with cardiovascular risk.


2020 ◽  
Vol 29 (R1) ◽  
pp. R66-R72
Author(s):  
Diana L Cousminer ◽  
Rachel M Freathy

Abstract In recent years, genome-wide association studies have shed light on the genetics of early growth and its links with later-life health outcomes. Large-scale datasets and meta-analyses, combined with recently developed analytical methods, have enabled dissection of the maternal and fetal genetic contributions to variation in birth weight. Additionally, longitudinal approaches have shown differences between the genetic contributions to infant, childhood and adult adiposity. In contrast, studies of adult height loci have shown strong associations with early body length and childhood height. Early growth-associated loci provide useful tools for causal analyses: Mendelian randomization (MR) studies have provided evidence that early BMI and height are causally related to a number of adult health outcomes. We advise caution in the design and interpretation of MR studies of birth weight investigating effects of fetal growth on later-life cardiometabolic disease because birth weight is only a crude indicator of fetal growth, and the choice of genetic instrument (maternal or fetal) will greatly influence the interpretation of the results. Most genetic studies of early growth have to date centered on European-ancestry participants and outcomes measured at a single time-point, so key priorities for future studies of early growth genetics are aggregation of large samples of diverse ancestries and longitudinal studies of growth trajectories.


Sign in / Sign up

Export Citation Format

Share Document