Comparing Effects of FOXO3A and Residing in Urban Areas on Longevity: A Gene-Environment Interaction Study

Author(s):  
John S Ji ◽  
Linxin Liu ◽  
Lijing Yan ◽  
Yi Zeng

Abstract Forkhead box O3 (FOXO3A) is a candidate longevity gene. Urban residents are also positively associated with longer life expectancy. We conducted a gene-environment interaction to assess the synergistic effect of FOXO3A and urban/rural environments on mortality. We included 3085 older adults from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). We used single nucleotide polymorphisms (SNPs) rs2253310, rs2802292, and rs4946936 to identify the FOXO3A gene and classified residential locations as "urban" and "rural." Given the open cohort design, we used the Cox-proportional hazard regression models to assess the mortality risk. We found the minor allele homozygotes of FOXO3A to have a protective effect on mortality [HR (95% CI) for rs4946936 TT vs. CC: 0.807 (0.653, 0.996); rs2802292 GG vs TT: 0.812 (0.67, 0.985); rs2253310 CC vs. GG: 0.808 (0.667, 0.978)]. Participants living in urban areas had a lower risk of mortality [HR of the urban vs. the rural: 0.854 (0.759, 0.962)]. The interaction between FOXO3A and urban and rural regions was statistically significant (pinteraction<0.01). Higher air pollution (fine particulate matter: PM2.5) and lower residential greenness (Normalized Difference Vegetation Index: NDVI) both contributed to higher mortality. After adjusting for NDVI and PM2.5, the protective effect size of FOXO3A SNPs was slightly attenuated while the protective effect size of living in an urban environment increased. The effect size of the beneficial effect of FOXO3 on mortality is roughly equivalent to that of living in urban areas. Our research findings indicate the effect of places of residence and genetic predisposition of longevity are intertwined.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Li Hua ◽  
Quanhua Liu ◽  
Jing Li ◽  
Xianbo Zuo ◽  
Qian Chen ◽  
...  

Abstract Background IL13, IL4, IL4RA, FCER1B and ADRB2 are susceptible genes of asthma and atopy. Our previous study has found gene–gene interactions on asthma between these genes in Chinese Han children. Whether the interactions begin in fetal stage, and whether these genes interact with prenatal environment to enhance cord blood IgE (CBIgE) levels and then cause subsequent allergic diseases have yet to be determined. This study aimed to determine whether there are gene–gene and gene-environment interactions on CBIgE elevation among the aforementioned five genes and prenatal environmental factors in Chinese Han population. Methods 989 cord blood samples from a Chinese birth cohort were genotyped for nine single-nucleotide polymorphisms (SNPs) in the five genes, and measured for CBIgE levels. Prenatal environmental factors were collected using a questionnaire. Gene–gene and gene-environment interactions were analyzed with generalized multifactor dimensionality methods. Results A four-way gene–gene interaction model (IL13 rs20541, IL13 rs1800925, IL4 rs2243250 and ADRB2 rs1042713) was regarded as the optimal one for CBIgE elevation (testing balanced accuracy = 0.5805, P = 9.03 × 10–4). Among the four SNPs, only IL13 rs20541 was identified to have an independent effect on elevated CBIgE (odds ratio (OR) = 1.36, P = 3.57 × 10–3), while the other three had small but synergistic effects. Carriers of IL13 rs20541 TT, IL13 rs1800925 CT/TT, IL4 rs2243250 TT and ADRB2 rs1042713 AA were estimated to be at more than fourfold higher risk for CBIgE elevation (OR = 4.14, P = 2.69 × 10–2). Gene-environment interaction on elevated CBIgE was found between IL4 rs2243250 and maternal atopy (OR = 1.41, P = 2.65 × 10–2). Conclusions Gene–gene interaction between IL13 rs20541, IL13 rs1800925, IL4 rs2243250 and ADRB2 rs1042713, and gene-environment interaction between IL4 rs2243250 and maternal atopy begin in prenatal stage to augment IgE production in Chinese Han children.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Hou ◽  
Yong Gao ◽  
Yan Zhang ◽  
Si-Tong Lin ◽  
Yue Yu ◽  
...  

Abstract Background The association of diabetic nephropathy (DN) risk with single nucleotide polymorphisms (SNPs) within Engulfment and Cell Motility 1 (ELMO1) gene and gene–environment synergistic effect have not been extensively examined in, therefore, the purpose of this study is to explore the association between multiple SNPs in ELMO1 gene, and the relationship between gene–environment synergy effect and the risk of DN. Methods Genotyping for 4 SNPs was performed with polymerase chain reaction (PCR) and following restriction fragment length polymorphism (RFLP) methods. Hardy–Weinberg balance of the control group was tested by SNPstats (online software: http://bioinfo.iconologia.net/snpstats). The best combination of four SNPs of ELMO1 gene and environmental factors was screened by GMDR model. Logistic regression was used to calculating the OR values between different genotypes of ELMO1 gene and DN. Results The rs741301-G allele and the rs10255208-GG genotype were associated with an increased risk of DN risk, adjusted ORs (95% CI) were 1.75 (1.19–2.28) and 1.41 (1.06–1.92), respectively, both p-values were < 0.001. We also found that the others SNPs-rs1345365 and rs7782979 were not significantly associated with susceptibility to DN. GMDR model found a significant gene–alcohol drinking interaction combination (p = 0.0107), but no significant gene–hypertension interaction combinations. Alcohol drinkers with rs741301-AG/GG genotype also have the highest DN risk, compared to never drinkers with rs741301-AA genotype, OR (95% CI) 3.52 (1.93–4.98). Conclusions The rs741301-G allele and the rs10255208-GG genotype, gene–environment interaction between rs741301 and alcohol drinking were all associated with increased DN risk.


2014 ◽  
Vol 122 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Bernardette Estandia-Ortega ◽  
José A. Velázquez-Aragón ◽  
Miguel A. Alcántara-Ortigoza ◽  
Miriam E. Reyna-Fabian ◽  
Sandra Villagómez-Martínez ◽  
...  

2019 ◽  
Vol 244 (18) ◽  
pp. 1642-1647
Author(s):  
Lixia Zhang ◽  
Ruohong Ding ◽  
Peng Kuang ◽  
Leiping Wang ◽  
Huixin Deng ◽  
...  

The objective of this study was to test the relationship of several single nucleotide polymorphisms (SNPs) within phosphodiesterase 4D ( PDE4D) and connexin 37 ( CONNEXIN37) gene additional interactions with ischemic stroke (IS) risk. The online software SNPstats was used for Hardy–Weinberg equilibrium testing. Generalized multifactor dimensionality reduction (GMDR) was employed to detect the potential interactions among CONNEXIN37 gene, PDE4D gene, and smoking. The results indicated that the rs1764391-T and rs966221-G were correlated with higher IS risk, the corresponding ORs (95% CI) were 1.66 (1.21–2.03) and 1.48 (1.11–1.92), respectively. We also found that the first two loci including rs1764391 and rs918592, and the other two-loci including rs1764391 and smoking were significant in the GMDR model. Participants with rs1764391-CT/TT and rs918592-CT/TT genotype have the highest IS risk, compared to subjects with rs1764391-CC and rs918592-CC genotype, OR (95%CI) = 3.16 (1.83–4.45); smokers with rs1764391-CT/TT genotype also have the highest IS risk, compared to never smokers with rs1764391-CC genotype, OR (95%CI) = 2.82 (1.53–4.15), but no significant interaction combinations were found between gene and alcohol drinking. So in this study, the rs1764391-T and rs966221-G, rs1764391–rs918592 interaction, rs1764391–smoking interaction were all associated with higher IS susceptibility. Impact statement Till now, no study investigated the interaction between CONNEXIN37 and PDE4D gene, and the gene–environment interaction. Therefore, in the current study, we aimed to evaluate the impact of interactions between CONNEXIN37 and PDE4D gene, and its interaction with environmental risk factors on susceptibility to ischemic stroke (IS).


1997 ◽  
Vol 78 (01) ◽  
pp. 457-461 ◽  
Author(s):  
S E Humphries ◽  
A Panahloo ◽  
H E Montgomery ◽  
F Green ◽  
J Yudkin

Sign in / Sign up

Export Citation Format

Share Document