scholarly journals The nucleation of the Izmit and Düzce earthquakes: Some mechanical logic on where and how ruptures began

Author(s):  
Michel Bouchon ◽  
Hayrullah Karabulut ◽  
Mustafa Aktar ◽  
Serdar Özalaybey ◽  
Jean Schmittbuhl ◽  
...  

Summary In spite of growing evidence that many earthquakes are preceded by increased seismic activity, the nature of this activity is still poorly understood. Is it the result of a mostly random process related to the natural tendency of seismic events to cluster in time and space, in which case there is little hope to ever predict earthquakes? Or is it the sign that a physical process that will lead to the impending rupture has begun, in which case we should attempt to identify this process. With this aim we take a further look at the nucleation of two of the best recorded and documented strike-slip earthquakes to date, the 1999 Izmit and Düzce earthquakes which ruptured the North Anatolian Fault over ∼200 km. We show the existence of a remarkable mechanical logic linking together nucleation characteristics, stress loading, fault geometry and rupture speed. In both earthquakes the observations point to slow aseismic slip occurring near the ductile-to-brittle transition zone as the motor of their nucleation.

2017 ◽  
Vol 50 (3) ◽  
pp. 1583
Author(s):  
V. Saltogianni ◽  
M. Gianniou ◽  
T. Taymaz ◽  
S. Yolsal-Çevikbilen ◽  
S. Stiros

A strong earthquake (Mw 6.9) on 24 May 2014 ruptured the North Aegean Trough (NAT) in Greece, west of the North Anatolian Fault Zone (NAFZ). In order to provide unbiased constrains of the rupture process and fault geometry of the earthquake, seismological and geodetic data were analyzed independently. First, based on teleseismic long-period P- and SH- waveforms a point-source solution yielded dominantly right-lateral strike-slip faulting mechanism. Furthermore, finite fault inversion of broad-band data revealed the slip history of the earthquake. Second, GPS slip vectors derived from 11 permanent GPS stations uniformly distributed around the meizoseismal area of the earthquake indicated significant horizontal coseismic slip. Inversion of GPS-derived displacements on the basis of Okada model and using the new TOPological INVersion (TOPINV) algorithm permitted to model a vertical strike slip fault, consistent with that derived from seismological data. Obtained results are consistent with the NAT structure and constrain well the fault geometry and the dynamics of the 2014 earthquake. The latter seems to fill a gap in seismicity along the NAT in the last 50 years, but seems not to have a direct relationship with the sequence of recent faulting farther east, along the NAFZ.


Author(s):  
V. Melnikova ◽  
N. Gileva ◽  
A. Seredkina ◽  
Ya. Radziminovich

We consider two earthquakes occurred at the south-western flank of the Baikal rift zone (BRZ): Urik, November 1, 2014 (Mwreg=4.6) and Hovsgol, December 5, 2014 (Mwreg=4.9). First of them is localized within the area of the Main Sayan fault, the second one is located at the north of the Hovsgol Lake. Seismic moment tensors (focal mechanisms, scalar seismic moments, moment magnitudes and hypocentral depths) of the study seismic events were calculated based on surface wave amplitude spectra. Earthquake hypocenters were found to be situated in the middle crust (h=14–21 km). Both events occurred under the strike-slip stress-strain field. The strike-slip was combined with a normal fault component in the source of the Urik earthquake and with a thrust fault component in the source of the Hovsgol earthquake. In both cases, shaking intensity in the nearest settlements (=42–124 km) was less than 4–5. Analysis of historical seismicity, seismological data on the Urik and Hovsgol earthquakes and the tectonic position of their sources demonstrates that the considered events are typical for the south-western flank of the BRZ and confirms the existence of the transition zone from rift structures at the central parts of the BRZ to regional compression structures in Northern Mongolia.


2020 ◽  
Author(s):  
Jiansheng Yu ◽  
Dongzhen Wang ◽  
Bin Zhao ◽  
Li Qi

Abstract The ENE striking Longmu Co fault and the North Altyn Tagh left-lateral slip fault have led to the complex regional structure in the northwestern Tibetan Plateau, resulting in a series of normal faulting and strike slip faulting earthquakes. Using both the ascending and descending Sentinel-1A/B radar images, we depict the coseismic deformation caused by the 2020 Yutian Mw 6.4 earthquake with a peak subsidence of ~20 cm. We determine the seismogenic fault geometry by applying the Bayesian approach with a Markov Chain Monte Carlo sampling method, which enables us to find the posterior probability density functions of the source model parameters. The estimation results reveal that the earthquake have dominantly by normal slip with moderate strike slip component. Based on the optimal fault geometry model, we extend the fault plane and invert for the finite fault model dislocation, which indicate that the slip is mainly concentrated at a shallow focal depth of 3–10 km with a maximum slip of ~1.0 m. Our preferred geodetic coseismic model exhibits no surface rupture, which may likely due to the shallow slip deficit in the uppermost crust. We calculate the combined loading effect of the Coulomb failure stress changes induced by the coseismic dislocations and postseismic viscoelastic relaxation of the 2008 Mw 7.1 and 2014 Mw 6.9 Yutian events. Our study demonstrates that the two preceding major Yutian shocks were insufficient to trigger the 2020 Yutian earthquake, which we consider perhaps reflects the natural release of elastic strain accumulated mainly through localized tectonic movement. We attribute the 2020 Yutian event to the release of extensional stress in a stepover zone controlled by the Longmu Co and the North Altyn Tagh sinistral strike slip fault systems. The seismic risk in the southwest end of the North Altyn Tagh fault has been elevated by the Yutian earthquake sequences, which require future attention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Gao ◽  
HuRong Duan ◽  
YongZhi Zhang ◽  
JiaYing Chen ◽  
HeTing Jian ◽  
...  

AbstractThe 2019 Ridgecrest, California seismic sequence, including an Mw6.4 foreshock and Mw7.1 mainshock, represent the largest regional seismic events within the past 20 years. To obtain accurate coseismic fault-slip distribution, we used precise positioning data of small earthquakes from January 2019 to October 2020 to determine the dip parameters of the eight fault geometry, and used the Interferometric Synthetic Aperture Radar (InSAR) data processed by Xu et al. (Seismol Res Lett 91(4):1979–1985, 2020) at UCSD to constrain inversion of the fault-slip distribution of both earthquakes. The results showed that all faults were sinistral strike-slips with minor dip-slip components, exception for dextral strike-slip fault F2. Fault-slip mainly occurred at depths of 0–12 km, with a maximum slip of 3.0 m. The F1 fault contained two slip peaks located at 2 km of fault S4 and 6 km of fault S5 depth, the latter being located directly above the Mw7.1hypocenter. Two slip peaks with maximum slip of 1.5 m located 8 and 20 km from the SW endpoint of the F2 fault were also identified, and the latter corresponds to the Mw6.4 earthquake. We also analyzed the influence of different inversion parameters on the fault slip distribution, and found that the slip momentum smoothing condition was more suitable for the inversion of the earthquakes slip distribution than the stress-drop smoothing condition.


Author(s):  
P Papadimitriou ◽  
V Kapetanidis ◽  
A Karakonstantis ◽  
I Spingos ◽  
K Pavlou ◽  
...  

Summary The properties of the Mw = 6.7 earthquake that took place on 25 October 2018, 22:54:51 UTC, ∼50 km SW of the Zakynthos Island, Greece, are thoroughly examined. The main rupture occurred on a dextral strike-slip, low-angle, east-dipping fault at a depth of 12 km, as determined by teleseismic waveform modelling. Over 4000 aftershocks were manually analysed for a period of 158 days. The events were initially located with an optimal 1D velocity model and then relocated with the double-difference method to reveal details of their spatial distribution. The latter spreads in an area spanning 80 km NNW-SSE and ∼55 km WSW-ENE. Certain parts of the aftershock zone present strong spatial clustering, mainly to the north, close to Zakynthos Island, and at the southernmost edge of the sequence. Focal mechanisms were determined for 61 significant aftershocks using regional waveform modelling. The results revealed characteristics similar to the mainshock, with few aftershocks exhibiting strike-slip faulting at steeper dip angles, possibly related to splay faults on the accretionary prism. The slip vectors that correspond to the east-dipping planes are compatible with the long-term plate convergence and with the direction of coseismic displacement on the Zakynthos Island. Fault-plane solutions in the broader study area were inverted for the determination of the regional stress-field. The results revealed a nearly horizontal, SW-NE to E-W-trending S1 and a more variable S3 axis, favouring transpressional tectonics. Spatial clusters at the northern and southern ends of the aftershock zone coincide with the SW extension of sub-vertical along-dip faults of the segmented subducting slab. The mainshock occurred in an area where strike-slip tectonics, related to the Cephalonia Transform Fault and the NW Peloponnese region, gradually converts into reverse faulting at the western edge of the Hellenic subduction. Plausible scenarios for the 2018 Zakynthos earthquake sequence include a rupture on the subduction interface, provided the slab is tilted eastwards in that area, or the reactivation of an older east-dipping thrust as a low-angle strike-slip fault that contributes to strain partitioning.


2013 ◽  
Vol 9 (12) ◽  
pp. 5558-5566 ◽  
Author(s):  
William R. French ◽  
Amulya K. Pervaje ◽  
Andrew P. Santos ◽  
Christopher R. Iacovella ◽  
Peter T. Cummings

1995 ◽  
Vol 36 (4) ◽  
pp. 504-510 ◽  
Author(s):  
Yutaka Hiraoka ◽  
Hiroaki Kurishita ◽  
Minoru Narui ◽  
Hideo Kayano

1996 ◽  
Vol 233-237 ◽  
pp. 248-252 ◽  
Author(s):  
P. Gondi ◽  
R. Montanari ◽  
A. Sili ◽  
M.E. Tata

Sign in / Sign up

Export Citation Format

Share Document