Joint Gramian inversion of geophysical data with different resolution capabilities: case study in Yellowstone

Author(s):  
Xiaolei Tu ◽  
Michael S Zhdanov

Summary Joint inversion of multiphysics data is a practical approach to the integration of geophysical data, which produces models of reduced uncertainty and improved resolution. The development of effective methods of joint inversion requires considering different resolutions of different geophysical methods. This paper presents a new framework of joint inversion of multiphysics data, which is based on a novel formulation of Gramian constraints and mitigates the difference in resolution capabilities of different geophysical methods. Our approach enforces structural similarity between different model parameters through minimizing a structural Gramian term, and it also balances the different resolutions of geophysical methods using a multiscale resampling strategy. The effectiveness of the proposed method is demonstrated by synthetic model study of joint inversion of the P-wave traveltime and gravity data. We apply a novel method based on Gramian constraints and multiscale resampling to jointly invert the gravity and seismic data collected in Yellowstone national Park to image the crustal magmatic system of the Yellowstone. Our results helped to produce a consistent image of the crustal magmatic system of the Yellowstone expressed both in low-density and low-velocity anomaly just beneath the Yellowstone caldera.

2019 ◽  
Vol 133 ◽  
pp. 01009
Author(s):  
Tomasz Danek ◽  
Andrzej Leśniak ◽  
Katarzyna Miernik ◽  
Elżbieta Śledź

Pareto joint inversion for two or more data sets is an attractive and promising tool which eliminates target functions weighing and scaling, providing a set of acceptable solutions composing a Pareto front. In former author’s study MARIA (Modular Approach Robust Inversion Algorithm) was created as a flexible software based on global optimization engine (PSO) to obtain model parameters in process of Pareto joint inversion of two geophysical data sets. 2D magnetotelluric and gravity data were used for preliminary tests, but the software is ready to handle data from more than two geophysical methods. In this contribution, the authors’ magnetometric forward solver was implemented and integrated with MARIA. The gravity and magnetometry forward solver was verified on synthetic models. The tests were performed for different models of a dyke and showed, that even when the starting model is a homogeneous area without anomaly, it is possible to recover the shape of a small detail of the real model. Results showed that the group analysis of models on the Pareto front gives more information than the single best model. The final stage of interpretation is the raster map of Pareto front solutions analysis.


1976 ◽  
Vol 66 (2) ◽  
pp. 501-524
Author(s):  
Keiiti Aki ◽  
Anders Christoffersson ◽  
Eystein S. Husebye

abstract Using P-wave residuals for teleseismic events observed at the Montana Large Aperture Seismic Array (LASA), we have determined the three-dimensional seismic structure of the lithosphere under the array to a depth of 140 km. The root-mean-square velocity fluctuation was found to be at least 3.2 per cent which may be compared to estimate of ca. 2 per cent based on the Chernov random medium theory. The solutions are given by both the generalized inverse and stochastic inverse methods in order to demonstrate the relative merit of different inversion techniques. The most conspicuous feature of the lithosphere under LASA is a low-velocity anomaly in the central and northeast part of the array siting area with the N60°E trend and persisting from the upper crust to depths greater than 100 km. We interpret this low-velocity anomaly as a zone of weakness caused by faulting and shearing associated with the building of the Rocky Mountains.


1996 ◽  
Vol 39 (6) ◽  
Author(s):  
C. Chiarabba ◽  
A. Amato

In this paper we provide P-wave velocity images of the crust underneath the Apennines (Italy), focusing on the lower crustal structure and the Moho topography. We inverted P-wave arrival times of earthquakes which occurred from 1986 to 1993 within the Apenninic area. To overcome inversion instabilities due to noisy data (we used bulletin data) we decided to resolve a minimum number of velocity parameters, inverting for only two layers in the crust and one in the uppermost mantle underneath the Moho. A partial inversion of only 55% of the overall dataset yields velocity images similar to those obtained with the whole data set, indicating that the depicted tomograms are stable and fairly insensitive to the number of data used. We find a low-velocity anomaly in the lower crust extending underneath the whole Apenninic belt. This feature is segmented by a relative high-velocity zone in correspondence with the Ortona-Roccamonfina line, that separates the northern from the southern Apenninic arcs. The Moho has a variable depth in the study area, and is deeper (more than 37 km) in the Adriatic side of the Northern Apennines with respect to the Tyrrhenian side, where it is found in the depth interval 22-34 km.


2021 ◽  
Author(s):  
Hélène Le Mével ◽  
Craig A. Miller ◽  
Yan Zhan

<p>In May 2018, a submarine eruption started offshore Mayotte (Comoros archipelago, Indian Ocean), and was first detected as a series of earthquake swarms. Since then, at least 6.4 km<sup>3</sup> of lava has erupted from a newly mapped volcanic edifice (MAYOBS campaigns), about 50 km east of Mayotte island. Since the onset of the eruption, GNSS stations on the island have recorded subsidence (up to 17 cm) and eastward displacement (up to 23 cm). We combine marine gravity data derived from satellite altimetry with finite element models to examine the magmatic system structure and its dynamics. First, we calculate the Mantle Bouguer Anomaly (MBA) by taking into account the gravitational effect of the bathymetry and the Moho interfaces, assuming a crust of constant thickness of 17.5 km and correction densities of 2.8 g/cm<sup>3</sup> and 3.3 g/cm<sup>3</sup> for the crust and mantle, respectively. We then invert the MBA to determine the anomalous density structures within the lithosphere, using the mixed Lp-norm inversion and Gauss-Newton optimization implemented in the SimPEG framework. The gravity inversion reveals two zones of low density, east of Mayotte island. The first is located NE of Petite Terre island between ~15 and 35 km depth, and the second is located further east, south of La Jumelle seamounts and extends from ~25 to 35 km depth. We interpret these low density regions as regions of partial melt stored in the lithosphere and estimate the volume of stored magma. Finally, we use the newly imaged low density bodies to constrain the magma reservoir geometry and simulate magma flow from this reservoir to the eruptive vent in a 3D, time-dependent, numerical model. The model parameters are adjusted by minimizing the misfit between the modeled surface displacement and that measured at the 6 GPS sites, between May 2018 and 2020. The deformation modeling reveals the temporal evolution of the magma flux during the eruption, and the resulting stress distribution in the crust explains the patterns of recorded seismicity. Together with the existing seismic and geodetic studies, the gravity data analysis and FEM models bring new constraints on the architecture of the magma plumbing system and the magmatic processes behind the largest submarine eruption ever documented.</p>


Author(s):  
Yan Yang ◽  
Huajian Yao ◽  
Hanxiao Wu ◽  
Ping Zhang ◽  
Maomao Wang

SUMMARY Southwest (SW) China is located in a transition site from the active Tibetan Plateau to the stable Yangtze craton, which has complicated tectonic deformation and severe seismic hazards. We combine data from ambient noise, teleseismic body and surface waves, and petroleum wells to better constrain the crustal shear-velocity structure in SW China. We jointly invert the Rayleigh wave dispersion (5–40 s period), Rayleigh wave ZH ratio (20–60 s period), and P-wave receiver function for 114 permanent stations with a stepwise linearized joint inversion method. Compared to previous tomography results, we observe higher shear velocity in the sedimentary rocks within the Sichuan Basin, which is consistent with sonic logging measurements. Our model reveals widespread low-velocity zones in the mid-lower crust, and their boundaries correlate well with major fault systems. Between two main mid-crustal low-velocity channels, a prominent high-velocity region surrounded by earthquakes is observed in the inner zone of the Emeishan large igneous province (ELIP) and around the Anninghe-Zemuhe fault zone. These observations are comparable to regional tomography results using very dense arrays. Based on the results, we suggest that mid-lower crustal ductile flow and upper-crustal rigid fault movement play equally important roles in controlling the regional deformation styles and earthquake distribution in SW China. Our results also resolve thick crust-mantle transition zones beneath the eastern Tibetan Plateau and the inner zone of the ELIP due to ‘top-down’ and ‘bottom-up’ crust-mantle interactions, respectively. Our new model can serve as a reference crustal model of future high resolution model construction in SW China.


2021 ◽  
Vol 47 (2) ◽  
pp. 59-70
Author(s):  
Katarzyna Miernik ◽  
Elżbieta Węglińska ◽  
Tomasz Danek ◽  
Andrzej Leśniak

Joint inversion is a widely used geophysical method that allows model parameters to be obtained from the observed data. Pareto inversion results are a set of solutions that include the Pareto front, which consists of non-dominated solutions. All solutions from the Pareto front are considered the most feasible models from which a particular one can be chosen as the final solution. In this paper, it is shown that models represented by points on the Pareto front do not reflect the shape of the real model. In this contribution, a collective approach is proposed to interpret the geometry of models retrieved in inversion. Instead of choosing single solutions from the Pareto front, all obtained solutions were combined in one “heat map”, which is a plot representing the frequency of points belonging to all returned objects from the solution set. The conducted experiment showed that this approach limits the problem of equivalence and is a promising way of representing the geometry of the model that was retrieved in the inversion process.


2021 ◽  
Vol 62 (2) ◽  
pp. 223-238
Author(s):  
Yu.A. Kugaenko ◽  
V.A. Saltykov ◽  
I.Yu. Koulakov ◽  
V.M. Pavlov ◽  
P.V. Voropaev ◽  
...  

Abstract —The Udina volcanic complex located in the southeastern part of the Klyuchevskoy group of volcanoes in Kamchatka remained dormant for several thousand years, but the magmatic system beneath the area may be awakening judging by seismic unrest. Seismicity in the area is characterized by data from permanent regional seismic stations and campaign local stations, as well as by data of the Kamchatka earthquake catalog. Seismic activity having nucleated at shallow depths in the vicinities of the Udina volcanoes since October 2017 may reflect a beginning cycle of volcanism. The earthquakes are mainly long-period (LP) 0.5–5 Hz events, which are commonly attributed to the movement of viscous magma and resonance phenomena in magma conduits. Such earthquakes may be a response to inputs of new magma batches to the plumbing system that feeds the volcanoes and thus may be precursors of volcanic unrest. Seismic campaigns of May–July 2018 near the Udina complex provided more rigorous constraints on earthquake coordinates and origin depths and showed that most of the earthquakes originated within 5 km beneath the Bolshaya Udina Volcano. Seismic tomographic inversion using the LOTOS code revealed a zone of high P-wave velocities, low S-wave velocities, and a high vP/vS ratio directly beneath the volcano. Such a combination of parameters typically occurs in active volcanic areas and marks intrusion of partially molten magma and/or liquid fluids. The velocity anomaly detected in 2018 is shallower than that recovered in 2014–2015. The seismic evidence, along with the available geological and geophysical data, record the movement of viscous magma related to the Udina feeding system in the middle crust, which is implicit proof for connection between the intermediate crustal and deep mantle magma sources renewed after a long lull.


2016 ◽  
Vol 59 (3) ◽  
pp. 276-287
Author(s):  
CUI Hui-Hui ◽  
ZHOU Yuan-Ze ◽  
SHI Yao-Lin ◽  
WANG Xiao-Ran ◽  
LI Guo-Hui

2020 ◽  
Author(s):  
Dmitry Molodtsov ◽  
Duygu Kiyan ◽  
Christopher Bean

<p>We present a generalized 3-D multiphysics joint inversion scheme with a focus on large-scale regional problems. One of the key features of this scheme is the formulation of the structure coupling as a sparsity-promoting joint regularization. This approach makes it possible to simplify the structure of the objective function and to keep the number of hyperparameters relatively low, so that the inversion framework complexity scales well with respect to the number of geophysical methods and possible reference models used. To further simplify adding geophysical solvers to the framework and to optimize the discretization, we propose an alternating minimization scheme that decouples the inversion and the joint regularization steps. Decoupling is achieved by introducing an auxiliary multi-parameter model. This allows the individual subproblems to make use of problem-tailored grids and specialized optimization algorithms. As we will see, this is in particular important for the regularization subproblem. In contrast to straightforward 'cooperative inversion' formulation, decoupled inversion steps appear to be regularized by a standard quadratic model-norm penalty, and as a result existing separate inversion codes can be used with minimal, if any, modifications. The developed scheme is applied to magnetotelluric, seismic and gravity data and tested on synthetic model examples.</p>


2020 ◽  
Author(s):  
Ran Cui ◽  
Yuanze Zhou

<p>As one of the most active intracontinental orogenic belts in the world, the Tien Shan orogenic belt originated in the Paleozoic and then experienced tectonic activities such as plate subduction and closure of the Paleo-Asian Ocean. Previous seismological and geodynamic studies have shown the observed the low-velocity anomaly (LVA) beneath the central Tien Shan at the uppermost mantle, which has a significant influence on the formation and modification of the crust and mantle lithosphere ( Lei et al, 2007). However, the distribution, morphology and physical property of the LVA are highly debatable.</p><p>We conduct 2-D forward waveform modeling based on spectral-element method (SEM) to investigate waveform distortions that were generated by the velocity contrast boundary of the LAV. The broadband P- and S- waves from three intermediate-depth earthquakes at Hindu Kush-Pamir were recorded by the Chinese Digital Seismograph Network (Zheng et al., 2010). We use these records to confirm the location, shape and velocity decrement of the LVA by fitting the observed records with the synthetics through SEM based on the 1D velocity structures (TSTB-B) of the central Tien Shan and northern Tarim basin (Gao et al., 2017). We find the LVA at 10~100 km beneath the eastern part of the central Tien Shan. And the northward under-thrusting of the Tarim Basin may trigger some mantle upwelling, contributing to the observed LVA.</p><p>Lei, J., Zhao, D. (2007). Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt.<em> Physics of the Earth and Planetary Interiors</em>, 162, 165-185, doi: 10.1016/j.pepi.200704010.</p><p>Zheng, X., Jiao, W., Zhang, C., et al. (2010). Short-Period Rayleigh-Wave Group Velocity Tomography through Ambient Noise Cross-Correlation in Xinjiang, Northwest China.<em> Bulletin of the Seismological Society of America</em>, 100(3): 1350-1355, doi: 10.1785/0120090225.</p><p>Gao, Y., Cui, Q., Zhou, Y. (2017). Seismic detection of P-wave velocity structure atop MTZ beneath the Central Tian Shan and Tarim Basin. <em>Chinese Journal of Geophysics ( in Chinese with English Abstract )</em>, 60 (1) : 98-111, doi: 10.6038 /cjg20170109.</p>


Sign in / Sign up

Export Citation Format

Share Document