Study on the layout of GNSS sites for strike-slip faults

2019 ◽  
Vol 219 (2) ◽  
pp. 1131-1137
Author(s):  
Zhenyu Zou ◽  
Zaisen Jiang ◽  
Yueju Cui ◽  
Long Zhang ◽  
Peng Wang ◽  
...  

SUMMARY In the profile analysis of faults, the distribution of GNSS sites directly affects the accuracy of the results of slip rate and locking depth. This paper discusses strategies for designing the layout of GNSS stations perpendicular to strike-slip faults in terms of site spacing and the Minimum Effective Distance, which is 20 times the locking depth of the fault. Three layout models are proposed considering the complexity of strike-slip faults: (1) Equal spacing layout, in which many stations are deployed in the far field, only a few are deployed in the near field. (2) Equal deformation layout, in which stations are densely arranged in the near field and sparsely arranged in the far field according to the frequency of deformation curve. (3) Equal slope spacing layout, in which stations are arranged according to the nonlinear degree of the deformation curve, with dense distribution in regions with high nonlinearity and sparse distribution in approximately linear regions. The three models were used to redistribute the sites in the Qiaojia to Dongchuan segment of the Xiaojiang fault profile, and their performances were compared with that of the current sites distribution of the segment. The results showed that model 1 is optimal for fitting the accuracy of slip rate and model 3 is optimal for the accuracy of locking depth. Overall, model 3 appears to be the best choice, considering that the accuracy of the locking depth is more difficult to control. One of the main purposes of deployment is to identify the seismogenic depth of the fault. With the locking depth of the fault gradually approaching the depth of the seismogenic layer during an interseismic period, the accuracy of observations of sites deployed at a preset value of historical seismogenic depth of the fault would improve.

2020 ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Wiwit Suryanto

Abstract This research was examines the focal mechanism associated with the mainshock and three aftershocks of the magnitude 6.3 Yogyakarta earthquake on May 27, 2006. This study, therefore, aims to provide a cleareranswer on the source mechanism of the earthquake, which has been debated. Data were obtained from the mainshock and aftershock sources, on June 8, 9, and 16, 2006. The mainshock and three aftershocks were used to conduct waveform inversion by calculating the Green's functions through the extended reflectivity method of the near-field and the far-field signal component. The mainshock's focal mechanism has a strike, dip, and range angle of 243.40o, 77.50o, and -28.30o, respectively.Furthermore, the mainshock is not a pure strike-slip as previously hypothesized. The focal mechanism for the aftershock earthquake source on Mw 4.4, obtained on June 8, had a strike, dip, rake, and variance of 192.20o, 29.70o, -48.30o and 0.22, respectively. This aftershock had a different segment from the mainshock event and those obtained on the 9 and 16 of June with the same type of faulting as the mainshock with variance values of 0.195 and 0.243. These results showed that the mainshock of May 27, 2006, activated the aftershock on June 8, with a different type of fault.


Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

1998 ◽  
Vol 38 (10) ◽  
pp. 323-330
Author(s):  
Philip J. W. Roberts

The results of far field modeling of the wastefield formed by the Sand Island, Honolulu, ocean outfall are presented. A far field model, FRFIELD, was coupled to a near field model, NRFIELD. The input data for the models were long time series of oceanographic observations over the whole water column including currents measured by Acoustic Doppler Current Profilers and density stratification measured by thermistor strings. Thousands of simulations were made to predict the statistical variation of wastefield properties around the diffuser. It was shown that the visitation frequency of the wastefield decreases rapidly with distance from the diffuser. The spatial variation of minimum and harmonic average dilutions was also predicted. Average dilution increases rapidly with distance. It is concluded that any impact of the discharge will be confined to a relatively small area around the diffuser and beach impacts are not likely to be significant.


Sign in / Sign up

Export Citation Format

Share Document