Correction of ATM mutations in iPS cells from two ataxia-telangiectasia patients restores DNA damage and oxidative stress responses

2020 ◽  
Vol 29 (6) ◽  
pp. 990-1001 ◽  
Author(s):  
Dmitry A Ovchinnikov ◽  
Sarah L Withey ◽  
Hannah C Leeson ◽  
U Wang Lei ◽  
Ashmitha Sundarrajan ◽  
...  

Abstract Patients with ataxia-telangiectasia (A-T) lack a functional ATM kinase protein and exhibit defective repair of DNA double-stranded breaks and response to oxidative stress. We show that CRISPR/Cas9-assisted gene correction combined with piggyBac (PB) transposon-mediated excision of the selection cassette enables seamless restoration of functional ATM alleles in induced pluripotent stem cells from an A-T patient carrying compound heterozygous exonic missense/frameshift mutations, and from a patient with a homozygous splicing acceptor mutation of an internal coding exon. We show that the correction of one allele restores expression of ~ 50% of full-length ATM protein and ameliorates DNA damage-induced activation (auto-phosphorylation) of ATM and phosphorylation of its downstream targets, KAP-1 and H2AX. Restoration of ATM function also normalizes radiosensitivity, mitochondrial ROS production and oxidative-stress-induced apoptosis levels in A-T iPSC lines, demonstrating that restoration of a single ATM allele is sufficient to rescue key ATM functions. Our data further show that despite the absence of a functional ATM kinase, homology-directed repair and seamless correction of a pathogenic ATM mutation is possible. The isogenic pairs of A-T and gene-corrected iPSCs described here constitute valuable tools for elucidating the role of ATM in ageing and A-T pathogenesis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Romaric Magerand ◽  
Pascal Rey ◽  
Laurence Blanchard ◽  
Arjan de Groot

AbstractDeinococcus bacteria are extremely resistant to radiation and other DNA damage- and oxidative stress-generating conditions. An efficient SOS-independent response mechanism inducing expression of several DNA repair genes is essential for this resistance, and is controlled by metalloprotease IrrE that cleaves and inactivates transcriptional repressor DdrO. Here, we identify the molecular signaling mechanism that triggers DdrO cleavage. We show that reactive oxygen species (ROS) stimulate the zinc-dependent metalloprotease activity of IrrE in Deinococcus. Sudden exposure of Deinococcus to zinc excess also rapidly induces DdrO cleavage, but is not accompanied by ROS production and DNA damage. Further, oxidative treatment leads to an increase of intracellular free zinc, indicating that IrrE activity is very likely stimulated directly by elevated levels of available zinc ions. We conclude that radiation and oxidative stress induce changes in redox homeostasis that result in IrrE activation by zinc in Deinococcus. We propose that a part of the zinc pool coordinated with cysteine thiolates is released due to their oxidation. Predicted regulation systems involving IrrE- and DdrO-like proteins are present in many bacteria, including pathogens, suggesting that such a redox signaling pathway including zinc as a second messenger is widespread and participates in various stress responses.


2006 ◽  
Vol 26 (5) ◽  
pp. 1598-1609 ◽  
Author(s):  
Rachel A. Freiberg ◽  
Ester M. Hammond ◽  
Mary Jo Dorie ◽  
Scott M. Welford ◽  
Amato J. Giaccia

ABSTRACT Due to the abnormal vasculature of solid tumors, tumor cell oxygenation can change rapidly with the opening and closing of blood vessels, leading to the activation of both hypoxic response pathways and oxidative stress pathways upon reoxygenation. Here, we report that ataxia telangiectasia mutated-dependent phosphorylation and activation of Chk2 occur in the absence of DNA damage during hypoxia and are maintained during reoxygenation in response to DNA damage. Our studies involving oxidative damage show that Chk2 is required for G2 arrest. Following exposure to both hypoxia and reoxygenation, Chk2−/− cells exhibit an attenuated G2 arrest, increased apoptosis, reduced clonogenic survival, and deficient phosphorylation of downstream targets. These studies indicate that the combination of hypoxia and reoxygenation results in a G2 checkpoint response that is dependent on the tumor suppressor Chk2 and that this checkpoint response is essential for tumor cell adaptation to changes that result from the cycling nature of hypoxia and reoxygenation found in solid tumors.


Author(s):  
Sinan Xiong ◽  
Wee-Joo Chng ◽  
Jianbiao Zhou

AbstractUnder physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.


Author(s):  
Pollyanna Francielli De Oliveira ◽  
Luis Fernando Leandro ◽  
Ricardo Andrade Furtado ◽  
Natália Helen Ferreira ◽  
Patrícia Mendonça Pauletti ◽  
...  

2015 ◽  
Vol 17 (4) ◽  
Author(s):  
Katiane Roversi ◽  
Dalila M. Benvegnú ◽  
Karine Roversi ◽  
Fabíola Trevizol ◽  
Luciana T. Vey ◽  
...  

Author(s):  
Beatrice L. Pool-Zobel ◽  
Salomon L. Abrahamse ◽  
Daniela Oberreuther ◽  
Sylvia Treptow-van Lishaut ◽  
Gerhard Rechkemmer

Sign in / Sign up

Export Citation Format

Share Document