scholarly journals Glucocerebrosidase deficiency promotes release of α-synuclein fibrils from cultured neurons

2020 ◽  
Vol 29 (10) ◽  
pp. 1716-1728 ◽  
Author(s):  
Matthew E Gegg ◽  
Guglielmo Verona ◽  
Anthony H V Schapira

Abstract Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the most important genetic risk factor for Parkinson disease (PD). GCase activity is also decreased in sporadic PD brains and with normal ageing. Loss of GCase activity impairs the autophagy lysosomal pathway resulting in increased α-synuclein (α-syn) levels. Furthermore, elevated α-syn results in decreased GCase activity. Although the role of α-syn in PD remains unclear, evidence indicates that aggregated α-syn fibrils are a pathogenic species in PD, passing between neurons and inducing endogenous native α-syn to aggregate; spreading pathology through the brain. We have investigated if preformed α-syn fibrils (PFFs) impair GCase activity in mouse cortical neurons and differentiated dopaminergic cells, and whether GCase deficiency in these models increased the transfer of α-syn pathology to naïve cells. Neurons treated with PFFs induced endogenous α-syn to become insoluble and phosphorylated at Ser129 to a greater extent than monomeric α-syn-treatment. PFFs, but not monomeric α-syn, inhibited lysosomal GCase activity in these cells and induced the unfolded protein response. Neurons in which GCase was inhibited by conduritol β-epoxide did not increase the amount of insoluble monomeric α-syn or its phosphorylation status. Instead the release of α-syn fibrils from GCase deficient cells was significantly increased. Co-culture studies showed that the transfer of α-syn pathology to naïve cells was greater from GCase deficient cells. This study suggests that GCase deficiency increases the spread of α-syn pathology and likely contributes to the earlier age of onset and increased cognitive decline associated with GBA-PD.

2019 ◽  
Author(s):  
Mandi Gandelman ◽  
Warunee Dansithong ◽  
Karla P Figueroa ◽  
Sharan Paul ◽  
Daniel R Scoles ◽  
...  

AbstractStaufen-1 (STAU1) is an RNA binding protein that becomes highly overabundant in numerous neurodegenerative disease models, including those carrying mutations in presenilin1 (PSEN1), microtubule associated protein tau (MAPT), huntingtin (HTT), TAR DNA-binding protein-43 gene (TARDBP) or C9orf72. We previously reported that elevations in STAU1 determine autophagy defects. Additional functional consequences of STAU1 overabundance, however, have not been investigated. We studied the role of STAU1 in the chronic activation of the Unfolded Protein Response (UPR), a common feature among the neurodegenerative diseases where STAU1 is increased, and is directly associated with neuronal death. Here we report that STAU1 is a novel modulator of the UPR, and is required for apoptosis induced by activation of the PERK-CHOP pathway. STAU1 levels increased in response to multiple ER stressors and exogenous expression of STAU1 was sufficient to cause apoptosis through the PERK-CHOP pathway of the UPR. Cortical neurons and skin fibroblasts derived from Stau1−/− mice showed reduced UPR and apoptosis when challenged with thapsigargin. In fibroblasts from SCA2 patients or with ALS-causing TDP-43 and C9ORF72 mutations we found highly increased STAU1 and CHOP levels in basal conditions. STAU1 knockdown restored CHOP levels to normal. Taken together, these results show STAU1 overabundance reduces cellular resistance to ER stress and precipitates apoptosis.


2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2021 ◽  
Vol 22 (5) ◽  
pp. 2567
Author(s):  
Yann S. Gallot ◽  
Kyle R. Bohnert

Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.


Author(s):  
Ana Sayuri Yamagata ◽  
Paula Paccielli Freire

Cancer cachexia is associated with deficient response to chemotherapy. On the other hand, the tumors of cachectic patients remarkably express more chemokines and have higher immune infiltration. For immunogenicity, a strong induction of the unfolded protein response (UPR) is necessary. UPR followed by cell surface exposure of calreticulin on the dying tumor cell is essential for its engulfment by macrophages and dendritic cells. However, some tumor cells upon endoplasmic reticulum (ER) stress can release factors that induce ER stress to other cells, in the so-called transmissible ER stress (TERS). The cells that received TERS produce more interleukin 6 (IL-6) and chemokines and acquire resistance to subsequent ER stress, nutrient deprivation, and genotoxic stress. Since ER stress enhances the release of extracellular vesicles (EVs), we suggest they can mediate TERS. It was found that ER stressed cachexia-inducing tumor cells transmit factors that trigger ER stress in other cells. Therefore, considering the role of EVs in cancer cachexia, the release of exosomes can possibly play a role in the process of blunting the immunogenicity of the cachexia-associated tumors. We propose that TERS can cause an inflammatory and immunosuppressive phenotype in cachexia-inducing tumors.


1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Oksana Tehlivets

Homocysteine (Hcy) has been recognized for the past five decades as a risk factor for atherosclerosis. However, the role of Hcy in the pathological changes associated with atherosclerosis as well as the pathological mechanisms triggered by Hcy accumulation is poorly understood. Due to the reversal of the physiological direction of the reaction catalyzed byS-adenosyl-L-homocysteine hydrolase Hcy accumulation leads to the synthesis ofS-adenosyl-L-homocysteine (AdoHcy). AdoHcy is a strong product inhibitor ofS-adenosyl-L-methionine (AdoMet)-dependent methyltransferases, and to date more than 50 AdoMet-dependent methyltransferases that methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids have been identified. Phospholipid methylation is the major consumer of AdoMet, both in mammals and in yeast. AdoHcy accumulation induced either by Hcy supplementation or due toS-adenosyl-L-homocysteine hydrolase deficiency results in inhibition of phospholipid methylation in yeast. Moreover, yeast cells accumulating AdoHcy also massively accumulate triacylglycerols (TAG). Similarly, Hcy supplementation was shown to lead to increased TAG and sterol synthesis as well as to the induction of the unfolded protein response (UPR) in mammalian cells. In this review a model of deregulation of lipid metabolism in response to accumulation of AdoHcy in Hcy-associated pathology is proposed.


Sign in / Sign up

Export Citation Format

Share Document