scholarly journals Comet assay of cumulus cell DNA status and the relationship to oocyte fertilization via intracytoplasmic sperm injection*

2001 ◽  
Vol 16 (5) ◽  
pp. 831-835 ◽  
Author(s):  
Rita S. Raman ◽  
Philip J. Chan ◽  
Johannah U. Corselli ◽  
William C. Patton ◽  
John D. Jacobson ◽  
...  
2006 ◽  
Vol 12 (4) ◽  
pp. 447-452 ◽  
Author(s):  
D Abu-Hassan ◽  
F Koester ◽  
B Shoepper ◽  
A Schultze-Mosgau ◽  
B Asimakopoulos ◽  
...  

Zygote ◽  
2011 ◽  
Vol 20 (4) ◽  
pp. 333-337 ◽  
Author(s):  
Kenzo Uchikura ◽  
Masashi Nagano ◽  
Mitsugu Hishinuma

SummaryWe examined the relationship between integrity of cumulus cells and nuclear maturation rate after in vitro culture to determine a non-invasive prediction of the maturational competence of feline oocytes. Feline cumulus–oocyte complexes (COCs) were collected from either small (400–800 μm) or large (≥800 μm) follicles. Immediately after collection, cumulus cells were evaluated morphologically (thickness of cumulus cell layers) and stained with propidium iodide (PI), which penetrates only non-viable cells. Cumulus cells without PI staining were judged as having good membrane integrity. After evaluation, COCs were cultured for 30 h and their nuclear maturation rate was determined. The nuclear maturation rate of oocytes derived from large follicles (89.8%) was higher (p < 0.05) than that from small follicles (60.8%). There was no difference in the maturation rate of oocytes from follicles with the same size regardless of cumulus morphology. In contrast, oocytes that had cumulus cells with good membrane integrity showed a higher maturation rate (93.8%) than oocytes with poor cumulus integrity (76.9%) in large follicles (p < 0.05). We conclude that evaluation of membrane integrity of cumulus cells by propidium iodide staining can be used to predict the maturational competence of oocytes.


2007 ◽  
Vol 19 (1) ◽  
pp. 241 ◽  
Author(s):  
G. Wirtu ◽  
C. E. Pope ◽  
M. C. Gomez ◽  
A. Cole ◽  
D. L. Paccamonti ◽  
...  

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique applicable in cases of limited male gamete availability. Moreover, it bypasses barriers of the oocyte, thus avoiding poorly understood species-specific capacitation events affecting sperm–egg interaction. In the present study, we evaluated the application of conventional and piezo drill-assisted ICSI and whether subsequent chemical activation is required for initiating embryonic development in eland (Taurotragus oryx) and bongo (Tragelaphus eurycerus) oocytes. Oocytes were collected using transvaginal ultrasound-guided follicular aspiration after gonadotropin-induced ovarian stimulation and incubated in modified TCM-199 medium (Gomez et al. 2000 Reprod. Fertil. Dev. 12, 423) containing 10% FBS. After 3 to 24 h, the cumulus cell layers were removed either by repeated mouth-pipetting and/or by using hyaluronidase. Oocytes with an extruded first polar body were used for ICSI and the other oocytes were returned to culture and evaluated every six hours Piezo drill-assisted (Kimura and Yanagimachi 1995 Biol. Reprod. 52, 709) or conventional (Gomez et al.) ICSI were done as described previously using glass pipettes with internal tip diameters of 9–10 µm. We used frozen–thawed or freshly collected spermatozoa that were kept in HEPES-buffered Tyrode's medium (Gomez et al.) for up to 24 h. Four to 6 h after ICSI, 3 activation treatments were examined: (1) none; (2) 7% ethanol, 5 min; or (3) calcium ionophore (5 µM, 5 min) followed by DMAP (2 mM, 4 h). Then we cultured oocytes in a humidified atmosphere of 5% O2, 5% CO2, and 90% N2 at 38.5°C in one of 3 media: SOF, α-MEM, or CR1aa containing essential and nonessential amino acids and FBS. Fifty-three of 70 (76%) eland oocytes survived after piezo-ICSI, and 13 of 16 (81%) survived after conventional ICSI. For bongo oocytes, 27 of 30 (90%) survived piezo-ICSI and all (n = 8) survived after conventional ICSI. Table 1 outlines cleavage data on Day 2. Generally, embryonic development was arrested at about 10 cells. In summary, eland and bongo oocytes can survive both conventional and piezo drill-assisted ICSI. Activation treatments do not appear to be a prerequisite for initiating cleavage after ICSI in eland and bongo antelope oocytes. Table 1.Cleavage of eland and bongo antelope oocytes after conventional or piezo-ICSI and three activation treatments


2003 ◽  
Vol 65 (4) ◽  
pp. 471-477 ◽  
Author(s):  
Seiichi WADA ◽  
Hidemitsu KURAHAYASHI ◽  
Yasuhiko KOBAYASHI ◽  
Tomoo FUNAYAMA ◽  
Kazuo YAMAMOTO ◽  
...  

2000 ◽  
Vol 74 (3) ◽  
pp. S257
Author(s):  
P.J Chan ◽  
R.S Raman ◽  
J.U Corselli ◽  
W.C Patton ◽  
J.D Jacobson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document