A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model

2020 ◽  
Vol 35 (5) ◽  
pp. 1029-1044 ◽  
Author(s):  
Y Baert ◽  
I Ruetschle ◽  
W Cools ◽  
A Oehme ◽  
A Lorenz ◽  
...  

Abstract STUDY QUESTION Is it possible to co-culture and functionally link human liver and testis equivalents in the combined medium circuit of a multi-organ chip? SUMMARY ANSWER Multi-organ-chip co-cultures of human liver and testis equivalents were maintained at a steady-state for at least 1 week and the co-cultures reproduced specific natural and drug-induced liver–testis systemic interactions. WHAT IS KNOWN ALREADY Current benchtop reprotoxicity models typically do not include hepatic metabolism and interactions of the liver–testis axis. However, these are important to study the biotransformation of substances. STUDY DESIGN, SIZE, DURATION Testicular organoids derived from primary adult testicular cells and liver spheroids consisting of cultured HepaRG cells and hepatic stellate cells were loaded into separate culture compartments of each multi-organ-chip circuit for co-culture in liver spheroid-specific medium, testicular organoid-specific medium or a combined medium over a week. Additional multi-organ-chips (single) and well plates (static) were loaded only with testicular organoids or liver spheroids for comparison. Subsequently, the selected type of medium was supplemented with cyclophosphamide, an alkylating anti-neoplastic prodrug that has demonstrated germ cell toxicity after its bioactivation in the liver, and added to chip-based co-cultures to replicate a human liver–testis systemic interaction in vitro. Single chip-based testicular organoids were used as a control. Experiments were performed with three biological replicates unless otherwise stated. PARTICIPANTS/MATERIALS, SETTING, METHODS The metabolic activity was determined as glucose consumption and lactate production. The cell viability was measured as lactate dehydrogenase activity in the medium. Additionally, immunohistochemical and real-time quantitative PCR end-point analyses were performed for apoptosis, proliferation and cell-specific phenotypical and functional markers. The functionality of Sertoli and Leydig cells in testicular spheroids was specifically evaluated by measuring daily inhibin B and testosterone release, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Co-culture in multi-organ chips with liver spheroid-specific medium better supported the metabolic activity of the cultured tissues compared to other media tested. The liver spheroids did not show significantly different behaviour during co-culture compared to that in single culture on multi-organ-chips. The testicular organoids also developed accordingly and produced higher inhibin B but lower testosterone levels than the static culture in plates with testicular organoid-specific medium. By comparison, testosterone secretion by testicular organoids cultured individually on multi-organ-chips reached a similar level as the static culture at Day 7. This suggests that the liver spheroids have metabolised the steroids in the co-cultures, a naturally occurring phenomenon. The addition of cyclophosphamide led to upregulation of specific cytochromes in liver spheroids and loss of germ cells in testicular organoids in the multi-organ-chip co-cultures but not in single-testis culture. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION The number of biological replicates included in this study was relatively small due to the limited availability of individual donor testes and the labour-intensive nature of multi-organ-chip co-cultures. Moreover, testicular organoids and liver spheroids are miniaturised organ equivalents that capture key features, but are still simplified versions of the native tissues. Also, it should be noted that only the prodrug cyclophosphamide was administered. The final concentration of the active metabolite was not measured. WIDER IMPLICATIONS OF THE FINDINGS This co-culture model responds to the request of setting up a specific tool that enables the testing of candidate reprotoxic substances with the possibility of human biotransformation. It further allows the inclusion of other human tissue equivalents for chemical risk assessment on the systemic level. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by research grants from the Scientific Research Foundation Flanders (FWO), Universitair Ziekenhuis Brussel (scientific fund Willy Gepts) and the Vrije Universiteit Brussel. Y.B. is a postdoctoral fellow of the FWO. U.M. is founder, shareholder and CEO of TissUse GmbH, Berlin, Germany, a company commercializing the Multi-Organ-Chip platform systems used in the study. The other authors have no conflict of interest to declare.

2021 ◽  
Author(s):  
Mark Borris D. Aldonza ◽  
Junghwa Cha ◽  
Insung Yong ◽  
Jayoung Ku ◽  
Dabin Lee ◽  
...  

AbstractCancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post-translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In both cancer cell cultures and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycoproteomes revealed that fucosylation of the antioxidant PON1 is a critical component of the therapy-induced secretome. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Non-specific and PON1-specific secretome de-N-glycosylation both limited the expansion of resistant clones in a tumor regression model. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.


2020 ◽  
Author(s):  
Olessia Jouravlev ◽  
Alexander J.E. Kell ◽  
Zachary Mineroff ◽  
A.J. Haskins ◽  
Dima Ayyash ◽  
...  

AbstractOne of the few replicated functional brain differences between individuals with autism spectrum disorders (ASD) and neurotypical (NT) controls is reduced language lateralization. However, most prior reports relied on comparisons of group-level activation maps or functional markers that had not been validated at the individual-subject level, and/or used tasks that do not isolate language processing from other cognitive processes, complicating interpretation. Furthermore, few prior studies have examined functional responses in other functional networks, as needed to determine the selectivity of the effect. Using fMRI, we compared language lateralization between 28 ASD participants and carefully pairwise-matched controls, with the language regions defined individually with a well-validated language localizer. ASD participants showed less lateralized responses due to stronger right hemisphere activations. Further, this effect did not stem from a ubiquitous reduction in lateralization across the brain: ASD participants did not differ from controls in the lateralization of two other large-scale networks—the Theory of Mind network and the Multiple Demand network. Finally, in an exploratory study, we tested whether reduced language lateralization may also be present in NT individuals with high autistic trait load. Indeed, autistic trait load in a large set of NT participants (n=189) was associated with less lateralized language activations. These results suggest that reduced language lateralization is a robust and spatially selective neural marker of autism, present in individuals with ASD, but also in NT individuals with higher genetic liability for ASD, in line with a continuum model of underlying genetic risk.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A58.2-A59
Author(s):  
A Ventura ◽  
P Palmerini ◽  
A Dalla Pietà ◽  
R Sommaggio ◽  
G Astori ◽  
...  

BackgroundCytokine-Induced Killer (CIK) cells are ex vivo expanded T cells with NK cell phenotype. They express both CD3 and CD56 antigens, and exert a potent antitumor activity against a variety of tumors. Several clinical trials demonstrated the safety and the feasibility of CIK cell therapy, with very low side effects and minimal graft-versus-host toxicity. In this study, we developed a GMP-compliant protocol for robust large-scale expansion of CIK cells using G-Rex® gas-permeable static culture flasks.Materials and MethodsCIK cells were obtained by stimulating healthy donor PBMCs with GMP-grade IFN-γ, IL-2 and CD3 mAbs, and were cultured in G-Rex6® or G-Rex®6M well plates. CIK cells in G-Rex6® were split only once at day 7 to reduce cell density, whereas the number of CIK cells culterd in G-Rex®6M was not adjusted. In both culture conditions, fresh IL-2 was provided every 3–4 days. We compared these two culture protocols with the culture in standard flasks. Phenotype was analyzed by flow cytometry and cytotoxicity was assessed against several tumor cell lines by calcein-release assay.ResultsCIK cells cultured in G-Rex6® well plates showed an outstanding cell expansion compared to G-Rex®6M well plates or standard culture flasks, with a 400-fold expansion and a mean of 109 total cells obtained per single well in 14 days, starting from just 2.5 × 106 cells per well. Moreover, the cultures in G-Rex6® were characterized by an higher percentage of CD3+CD56+ cells, as compared to G-Rex®6M or standard culture flasks. Cells cultured in all devices had a comparable expression of NKG2D, NKp30, NKp44, 2B4 receptors. Importantly, CIK cells expanded in G-Rex®6 were as cytotoxic as cells expanded in standard culture flasks. Conversely, CIK cells cultured in G-Rex®6M showed a remarkable reduction of cytotoxicity against tumor cell targets, thus suggesting that cell density during expansion could affect CIK cell activity.ConclusionsWe propose a GMP-compliant protocol for robust large-scale production of CIK cells. G-Rex® system allows to obtain large amounts of CIK cells highly enriched in the CD3+CD56+ subset and endowed with high cytotoxic activity; this can be accomplished with just a single cell culture split at day 7, which dramatically reduces the culture manipulation as compared to the standard culture flasks. Notably, this strategy can be further and easily scalable to produce CIK cells for clinical immunotherapy applications.Disclosure InformationA. Ventura: None. P. Palmerini: None. A. Dalla Pietà: None. R. Sommaggio: None. G. Astori: None. K. Chieregato: None. M. Tisi: None. C. Visco: None. O. Perbellini: None. M. Ruggeri: None. E. Cappuzzello: None. A. Rosato: None.


Hepatology ◽  
2020 ◽  
Vol 72 (1) ◽  
pp. 257-270 ◽  
Author(s):  
Kerstin Schneeberger ◽  
Natalia Sánchez‐Romero ◽  
Shicheng Ye ◽  
Frank G. Steenbeek ◽  
Loes A. Oosterhoff ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 278
Author(s):  
K. A. Preis ◽  
G. E. Seidel Jr ◽  
D. K. Gardner

In vitro maturation of immature oocytes results in limited success in both clinical and research laboratories. Although reduced oxygen concentration is beneficial to embryo development, the optimal concentration for oocyte maturation has yet to be determined. The objective of this study was to determine whether oxygen tension (20% or 5% O2) affects oocyte physiology. Additionally, the effect of epidermal growth factor (EGF) in maturation medium on oocyte metabolic activity and subsequent embryo development was determined. Cumulus–oocyte complexes (COCs; n = 231) were collected from 28-day-old unprimed F1 (C57BL/6 × CBA/ca) mice. COCs were individually matured in defined medium at 37°C in 6% CO2 in one of four groups (Table 1). For the metabolism study, COCs were further divided into two groups: individual maturation in a 2-µL drop of medium for 16 h (n = 131); or individual maturation in 5-μL for 12 h and then placed in a 0.5-μL drop of medium for 4 h (n = 100), the time of greatest metabolic activity of the COC. At 17 h of maturation, COCs were individually fertilized, and zygotes were individually cultured until 96 h, at which time blastocyst development was assessed. Metabolic profiles were analyzed by ANOVA, and blastocyst rates were analyzed by Fisher's exact test. Maturation rates and blastocyst development were not different between groups. However, at 12–16 h of maturation, metabolism of COCs was affected by both oxygen tension and EGF (Table 1). Concerning metabolism over the entire course of maturation, glucose uptake and lactate production were higher in COCs in 5% O2 + 100 ng EGF (P < 0.05) than in the remaining three groups. There was no difference between 5% O2 and 20% O2 + 100 ng EGF, but 20% O2 caused less glucose uptake and lactate production than did the other three treatment groups (P < 0.05). Results of this study are the first to show that oxygen tension alters COC metabolism: COCs matured under 5% O2 were more active metabolically than COCs matured under 20% O2. The effect of oxygen tension is to some extent moderated by the presence of EGF, as metabolic activity of COCs matured under 20% O2 + 100 ng EGF was closer to that of COCs matured under 5% O2 conditions. Although blastocyst rates were similar across the four groups, embryos derived from oocytes matured in different oxygen tensions may exhibit different developmental potential. In conclusion, results of this study have implications for the improvement of maturation conditions in both clinical and research laboratories. Table 1. Carbohydrate metabolism of individual COCs at 12–16 h of maturation


2019 ◽  
Vol 20 (8) ◽  
pp. 1897 ◽  
Author(s):  
Shuaibing He ◽  
Tianyuan Ye ◽  
Ruiying Wang ◽  
Chenyang Zhang ◽  
Xuelian Zhang ◽  
...  

As one of the leading causes of drug failure in clinical trials, drug-induced liver injury (DILI) seriously impeded the development of new drugs. Assessing the DILI risk of drug candidates in advance has been considered as an effective strategy to decrease the rate of attrition in drug discovery. Recently, there have been continuous attempts in the prediction of DILI. However, it indeed remains a huge challenge to predict DILI successfully. There is an urgent need to develop a quantitative structure–activity relationship (QSAR) model for predicting DILI with satisfactory performance. In this work, we reported a high-quality QSAR model for predicting the DILI risk of xenobiotics by incorporating the use of eight effective classifiers and molecular descriptors provided by Marvin. In model development, a large-scale and diverse dataset consisting of 1254 compounds for DILI was built through a comprehensive literature retrieval. The optimal model was attained by an ensemble method, averaging the probabilities from eight classifiers, with accuracy (ACC) of 0.783, sensitivity (SE) of 0.818, specificity (SP) of 0.748, and area under the receiver operating characteristic curve (AUC) of 0.859. For further validation, three external test sets and a large negative dataset were utilized. Consequently, both the internal and external validation indicated that our model outperformed prior studies significantly. Data provided by the current study will also be a valuable source for modeling/data mining in the future.


2015 ◽  
Vol 28 (5) ◽  
pp. 872-885 ◽  
Author(s):  
Jong Min Choi ◽  
Soo Jin Oh ◽  
Ji-Yoon Lee ◽  
Jang Su Jeon ◽  
Chang Seon Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document