O-026 Advanced Glycation Endproducts: A new player in obesity related infertility

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Hutchison ◽  
T T Truong ◽  
T A Egell ◽  
L A Salamonsen ◽  
D K Gardner ◽  
...  

Abstract text Globally, 39% of the adult population is overweight or obese, with the prevalence of obesity following an upward trajectory over the recent decades (WHO). Up to 30% of women of reproductive age in Western countries are obese before conception, and obese women experience higher rates of infertility and pregnancy complications than lean women; however, the mechanisms underpinning obesity-related infertility are poorly understood. Advanced Glycation Endproducts (AGEs) are a proinflammatory modification of proteins exposed to sugars, formed through the Maillard reaction. AGEs are elevated four-fold in the uterine fluid of obese, infertile women, compared to lean. AGEs equimolar to those in the obese microenvironment negatively impact the functions of endometrial epithelial and stromal cells, and adhesion and invasion of trophoblast cells, reducing the potential for successful maternal-fetal interactions (Antoniotti et al., 2018). This research further investigated preimplantation embryo development and endometrial cell functions in the presence of AGEs equimolar to those in obese uterine fluid. Altered local environments in very early life can set offspring up for a lifetime of health or disease (DoHAD); thus, uterine AGEs may contribute to the prevalence of non-communicable disease in children of obese parents. Preimplantation mouse embryos were cultured in vitro with AGEs equimolar with uterine fluid concentrations from lean and obese women, and their development and implantation potential assessed. “Obese” AGEs did not impact the proportion of embryos reaching blastocyst stage by day 4, but significantly reduced the proportion of blastocysts hatching by day 5 (P < 0.01). AGEs equimolar with the obese uterine environment detrimentally impacted trophectoderm formation and function: reduced trophectoderm cell number (P < 0.01), reduced outgrowth on fibronectin (indicative of reduced implantation potential, (P < 0.01), but did not increase cell apoptosis (TUNEL assay). RAGE antagonism, but neither metformin nor antioxidants, improved trophectoderm cell number. Thus, obesity-associated AGEs link obesity and reduced fertility through poor placentation potential of embryos (Hutchison et al, 2020). Endometrial epithelial cell function was examined in the presence of lean and obese concentrations of AGEs. Obese AGEs significantly reduced the rate of proliferation (xCelligence real time cell analysis) of the endometrial epithelial cell line ECC-1 versus lean AGEs (P = 0.04). Antioxidants successfully restored the rate of proliferation in the presence of obese AGEs (P = 0.7 versus lean AGEs). Subsequently, human endometrial epithelial organoid culture was utilised as a more physiologically relevant experimental paradigm. When cultured as organoids, primary endometrial epithelial cells were functionally responsive to obesity-associated AGEs, expressing both RAGE and TLR4. The morphology of organoids in culture was not impacted by the presence of obese AGEs versus lean; however, the proliferation of epithelial cells retrieved from organoid culture was altered by obese AGEs versus lean. Obese AGEs also increased the secretion of proinflammatory CXCL16 versus vehicle control (P = 0.04) while increased secretion of other proinflammatory cytokines and chemokines including TNFa approached significance in the presence of obese AGEs. As the inflammatory milieu is altered in the uterine fluid of infertile women, elevated AGEs may promote an infertile endometrial inflammatory environment. AGEs link obesity and reduced fertility, being detrimental to preimplantation embryo development and endometrial cell function when present at concentrations equal to those in obese uterine fluid. Antioxidants and RAGE antagonism provide beneficial effects to cell function in the presence of obesity-associated AGEs. This research provides evidence supporting AGEs as a factor contributing to obesity related infertility, and as an emerging frontier for reproductive health. Clinically, reduction of uterine AGEs may improve fertility for obese couples wishing to conceive. Antoniotti et al (2018). Hum Rep. 33(4), 654-665. PMID: 29471449 Hutchison et al (2020). RBMO. 41(5), 757-766. PMID: 32972872

2010 ◽  
Vol 22 (3) ◽  
pp. 564 ◽  
Author(s):  
Dessie Salilew-Wondim ◽  
Micheal Hölker ◽  
Franca Rings ◽  
Chirawath Phatsara ◽  
Abdollah Mohammadi-Sangcheshmeh ◽  
...  

Baculoviral inhibitors of apoptosis repeat-containing 6 (BIRC6) is believed to inhibit apoptosis by targeting key cell-death proteins. To understand its involvement during bovine preimplantation embryo development, two consecutive experiments were conducted by targeted knockdown of its mRNA and protein using RNA interference. In Experiment 1, the effect of BIRC6 knockdown during the early stages of preimplantation embryo development was assessed by injecting zygotes with long double-stranded RNA (ldsRNA) and short hairpin RNA (shRNA) against BIRC6 mRNA followed by in vitro culturing until 96 h post insemination (hpi). The results showed that in RNA-injected zygote groups, reduced levels of BIRC6 mRNA and protein were accompanied by an increase (P < 0.05) in the proportion of 2- and 4-cell and uncleaved embryos and a corresponding decrease (P < 0.05) in the number of 8-cell embryos. In Experiment 2, the effect of BIRC6 knockdown on blastocyst formation, blastocyst total cell number and the extent of apoptosis was investigated. Consequently, zygotes injected with ldsRNA and shRNA resulted in lower (P < 0.05) blastocyst formation and total blastocyst cell number. Moreover, the apoptotic cell ratio, CASPASE 3 and 7 activity, BAX to BCL-2 ratio and levels of SMAC and CASPASE 9 were higher in blastocysts derived from the ldsRNA and shRNA groups, suggesting increased apoptosis in those blastocysts. The results of this study reveal the importance of BIRC6 expression for embryo survival during bovine preimplantation embryo development. However, whether BIRC6 is essential for implantation and fetal development during bovine pregnancy needs further research.


Reproduction ◽  
2019 ◽  
Vol 157 (5) ◽  
pp. R159-R179 ◽  
Author(s):  
Alexandra J Harvey

Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.


10.32947/357 ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 1-10

Thirty three infertile women were divided into two groups according to their BMI (21 obese and 12 overweight) there age ranges between (16-41) years, with their husbands twenty one infertile men and twelve fertile men and their ages range between (23-46) years. In the present study we observed that several indicators affect the fertility such as BMI in infertile obese women which was 34.65 kg/m2. That is higher than that of overweight infertile women that recorded 24.87 kg/m2. obese housewives scored the highest percentage (85.71%) compared with the overweight group (25%), In addition the obese age group between 30-41 years scored (66.67%) compared with the overweight group whose members’ age 16-29.9 years scored 75%. However, drinking cola (soft drink) percentage in obese infertile women was (85.71%) and the tea consumption was higher in overweight group (66.67%). The hormones FSH and LH decrease in obese women but serum prolactin hormone increased twice about 29.27 ng/ml in comparison with overweight group. Testosterone hormone decreased in obese women but Leptin in obese women (19.52 μg/L) was higher than that of overweight women (11.03 μg/L). Infertile unemployed men got the highest percentage of 66.67%. Besides, the smoker infertile men were higher in percentage (80.95%) compared with fertile men 41.67%. The elevated LH, FSH and prolactin values are significantly high (p<0.01) (7.895 mlU/ml, 9.89 mlU/ml and 13.33 ng/ml) respectively, but the testosterone was significantly low (3.91 ng/dl) in comparison with fertile men(21.76ng/dl). Whileleptin significantly increased in infertile men more than the fertile ones. These changes in hormones have a great correlation with semen characteristics as the abnormalities in sperms increased to (64.52) and the percentage of rapid, progressive and non -progressive motility decreased, but the immotile motility was highly significant (65.71) in infertile men. As a result this indicates that the reason of infertility is shared between the wife and husband.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 564
Author(s):  
Haruki Watanabe ◽  
Myoungsun Son

The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE’s roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.


Sign in / Sign up

Export Citation Format

Share Document