scholarly journals The Use of Gait Transition Speed in Comparative Studies of Fish Locomotion

1996 ◽  
Vol 36 (6) ◽  
pp. 555-566 ◽  
Author(s):  
ELIOT G. DRUCKER
1996 ◽  
Vol 199 (10) ◽  
pp. 2243-2252 ◽  
Author(s):  
E Drucker ◽  
J Jensen

In this study, we report the first allometric equations relating gait parameters and swimming speed to body size for fish employing pectoral fin locomotion. Comparisons of locomotor kinematics and performance among striped surfperch (Teleostei: Embiotocidae) are made at the pectoral­caudal gait transition speed (Up-c). Up-c is considered to elicit physiologically equivalent levels of exercise in animals varying over 100-fold in body mass (Mb) by virtue of dynamically similar pectoral fin movements (constant duty factor, length-specific stride length and fin-beat amplitude) and size-independent propulsive efficiency. At Up-c, pectoral fin-beat frequency scales in proportion to Mb-0.12±0.03, a size-dependence consistent with that observed for stride frequency in fishes swimming by axial undulatory propulsion and in many running tetrapods. It is proposed that the similarity in the scaling of frequency in these vertebrate groups reflects an underlying similarity in the allometry of the maximal velocity of muscle shortening. Absolute Up-c (m s-1) generally increases with body size, but the fastest speeds are not exhibited by the largest animals. A pattern of declining performance in fish 23 cm in standard length and longer may be related to their disproportionately small fin areas and aspect ratios. The pronounced negative allometry of Up-c expressed as standard body lengths per second indicates that a given length-specific speed does not induce comparable levels of activity in large and small fish. Thus, normalization of swimming speed to body length may not be a sufficient correction for kinematic comparisons across size.


2000 ◽  
Vol 16 (4) ◽  
pp. 428-435 ◽  
Author(s):  
Li Li

Variability has long been used as an indication of stability in the application of a dynamical systems approach to human motion (i.e., greater variability has been related to a less stable system and vise versa). This paper incorporates the probability of gait transition during walking and running at a certain speed to represent the stability of human locomotion. The mathematical representation concerning the probability of gait transition change with locomotory speed was derived for increasing walking speed and decreasing running speed. Additionally, the influence of acceleration and deceleration on the stability landscapes of walking and running was discussed based on experimental data. The influence of acceleration was also used to explain the different trends of hysteresis observed by various researchers. Walk-to-run transition speed was greater than run-to-walk transition speed, with a greater magnitude of acceleration, while the trend was reversed with a lesser acceleration magnitude. The quantitative measure of the relationship between variability and stability needs to be explored in the future.


2001 ◽  
Vol 17 (4) ◽  
pp. 287-296 ◽  
Author(s):  
Alan Hreljac ◽  
Alan Arata ◽  
Reed Ferber ◽  
John A. Mercer ◽  
Brandi S. Row

Previous research has demonstrated that the preferred transition speed during human locomotion is the speed at which critical levels of ankle angular velocity and acceleration (in the dorsiflexor direction) are reached, leading to the hypothesis that gait transition occurs to alleviate muscular stress on the dorsiflexors. Furthermore, it has been shown that the metabolic cost of running at the preferred transition speed is greater than that of walking at that speed. This increase in energetic cost at gait transition has been hypothesized to occur due to a greater demand being placed on the larger muscles of the lower extremity when gait changes from a walk to a run. This hypothesis was tested by monitoring electromyographic (EMG) activity of the tibialis anterior, medial gastrocnemius, vastus lateralis, biceps femoris, and gluteus maximus while participants (6 M, 3 F) walked at speeds of 70, 80, 90, and 100% of their preferred transition speed, and ran at their preferred transition speed. The EMG activity of the tibialis anterior increased as walking speed increased, then decreased when gait changed to a run at the preferred transition speed. Concurrently, the EMG activity of all other muscles that were monitored increased with increasing walking speed, and at a greater rate when gait changed to a run at the preferred transition speed. The results of this study supported the hypothesis presented.


2018 ◽  
Vol 57 ◽  
pp. 1-12 ◽  
Author(s):  
Stacey M. Kung ◽  
Philip W. Fink ◽  
Stephen J. Legg ◽  
Ajmol Ali ◽  
Sarah P. Shultz

1995 ◽  
Vol 117 (4) ◽  
pp. 466-473 ◽  
Author(s):  
P. Nanua ◽  
K. J. Waldron

In this paper, the dynamics of quadruped trot, gallop, and bound will be examined using a simple model for the quadruped. The body of the quadruped is modeled as a uniform bar and the legs are modeled by massless springs. It will be shown that symmetry can be used to study the locomotion of this system. Using symmetry, a technique will be developed to obtain periodic solutions for each of the gaits of the quadruped model. These periodic solutions will be computed at various speeds. The energy levels will be compared for each of the gaits. The exchange of energy between its different forms will be shown for different gaits. It will be shown that even without body flexibility, there are significant savings in energy due to gait transition from trot to gallop. The energy levels will be used to predict the trot-gallop transition speed. These results will be compared with the experimental results for horses and dogs.


2014 ◽  
Vol 30 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Toran D. MacLeod ◽  
Alan Hreljac ◽  
Rodney Imamura

This study was conducted to investigate whether adding mass to subjects’ feet affects the preferred transition speed (PTS), and to ascertain whether selected swing phase variables (maximum ankle dorsiflexion angular velocity, angular acceleration, joint moment, and joint power) are determinants of the PTS, based upon four previously established criteria. After the PTS of 24 healthy active male subjects was found, using an incremental protocol in loaded (2 kg mass added to each shoe) and unloaded (shoes only) conditions, subjects walked at three speeds (60%, 80%, and 100% of PTS) and ran at one speed (100% of PTS) on a motor-driven treadmill while relevant data were collected. The PTS of the unloaded condition (2.03 ± 0.12 m/s) was significantly greater (P< .05) than the PTS of the loaded condition (1.94 ± 0.13 m/s). Within both load conditions, all dependent variables increased significantly with walking speed, decreased significantly when gait changed to a run, and were assumed to provide the necessary input to signal a gait transition, fulfilling the requirements of the first three criteria, but only ankle angular velocity reached a critical level before the transition, satisfying all four criteria to be considered a determinant of the PTS.


1998 ◽  
Vol 201 (21) ◽  
pp. 2935-2944 ◽  
Author(s):  
C R Lee ◽  
C T Farley

Walking is often modeled as an inverted pendulum system in which the center of mass vaults over the rigid stance limb. Running is modeled as a simple spring-mass system in which the center of mass bounces along on the compliant stance limb. In these models, differences in stance-limb behavior lead to nearly opposite patterns of vertical movements of the center of mass in the two gaits. Our goal was to quantify the importance of stance-limb behavior and other factors in determining the trajectory of the center of mass during walking and running. We collected kinematic and force platform data during human walking and running. Virtual stance-limb compression (i.e. reduction in the distance between the point of foot-ground contact and the center of mass during the first half of the stance phase) was only 26% lower for walking (0.091 m) than for running (0.123 m) at speeds near the gait transition speed. In spite of this relatively small difference, the center of mass moved upwards by 0.031 m during the first half of the stance phase during walking and moved downwards by 0.073 m during the first half of the stance phase during running. The most important reason for this difference was that the stance limb swept through a larger angle during walking (30.4 degrees) than during running (19.2 degrees). We conclude that stance-limb touchdown angle and virtual stance-limb compression both play important roles in determining the trajectory of the center of mass and whether a gait is a walk or a run.


Sign in / Sign up

Export Citation Format

Share Document