scholarly journals Separating species using a horizontal panel in the Scottish North Sea whitefish trawl fishery

2007 ◽  
Vol 64 (8) ◽  
pp. 1543-1550 ◽  
Author(s):  
R. S. T. Ferro ◽  
E. G. Jones ◽  
R. J. Kynoch ◽  
R. J. Fryer ◽  
B-E. Buckett

Abstract Ferro, R. S. T., Jones, E. G., Kynoch, R. J., Fryer, R. J., and Buckett, B-E. 2007. Separating species using a horizontal panel in the Scottish North Sea whitefish trawl fishery. – ICES Journal of Marine Science, 64: 1543–1550. In the North Sea, Scottish vessels target haddock, cod, whiting, monkfish, saithe, and flatfish in a mixed whitefish trawl fishery. These species mature at different sizes and hence have a range of minimum landing sizes. Their different shapes and swimming capabilities imply different selection characteristics when escaping from trawl gear. However, they are often caught at the same time on the same grounds. Optimal exploitation can only be achieved by ensuring that the selection of each species varies appropriately with length during the fishing process. This paper describes one part of a large European project to develop species-selective trawl gear to improve the exploitation pattern of North Sea cod, while maintaining the catch of other important commercial species. A gear suitable to the Scottish mixed whitefish fishery was fitted with a horizontal panel in the tapered part of the net to separate species into an upper and lower compartment. Trials were conducted on research vessels to measure separation performance for nine species in different light conditions, at different towing speeds, and with different lengths of panel. Most haddock, whiting, and saithe pass above the panel, whereas most cod, flatfish, and monkfish pass below it. Towing speed and panel length had no significant effect on separation. At lower light levels during the night (April at latitude 58° to 61°N), fewer dab, sole, plaice, and cod pass below the panel. Observations and measurements of fish behaviour using acoustic methods are described. They suggest that the height at which fish enter the net mouth may be influenced by light level and water clarity.

1999 ◽  
Vol 42 (1-2) ◽  
pp. 167-181 ◽  
Author(s):  
N Madsen ◽  
T Moth-Poulsen ◽  
R Holst ◽  
D Wileman

PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200464 ◽  
Author(s):  
Juan Santos ◽  
Bent Herrmann ◽  
Daniel Stepputtis ◽  
Claudia Günther ◽  
Bente Limmer ◽  
...  

Author(s):  
R. S. Wimpenny

1. Diameter measurements of Rhizosolenia styliformis from the Antarctic, the subtropical Atlantic and Pacific Oceans and from the North Sea and neighbouring waters have made it appear necessary to set up two varieties, oceanica and semispina, in addition to the type of the species R. styliformis. The type as I describe it has been called var. longispina by Hustedt, but elsewhere it has often been figured as the var. oceanica of this paper. Var. semispina is synonymous with the form represented by Karsten as R. semispina Hensen. It differs from R. semispina as drawn by Hensen and its synonym R. hebetata forma semispina Gran, but is thought likely to be linked by intermediates. If this is so R. hebetata may have to be extended to include and suppress R. styliformis, as var. semispina is linked to the type by intermediates. Var. oceanica has no intermediate forms and, if R. hebetata is to be extended, this variety should be established as a separate species.2. Var. oceanica is absent from the southern North Sea and appears to be an indicator species related to oceanic inflow.3. Auxospore formation was observed for the type in the southern North Sea in 1935 and biometric observations suggest that a period of 3-4 years elapsed between the production of auxospore generations in that area. Outside the southern North Sea for the type, measurements give no indication of auxospore generations occurring at intervals exceeding a year. While auxospore formation has been seen in var. oceanica from the Shetlands area samples of June 1935 and July 1938, this phenomenon has not been observed for var. semispina.


2006 ◽  
Vol 77 (2) ◽  
pp. 248-263 ◽  
Author(s):  
Kurt Kvalsvik ◽  
Ingvar Huse ◽  
Ole Arve Misund ◽  
Kjell Gamst

2008 ◽  
Vol 65 (6) ◽  
pp. 822-831 ◽  
Author(s):  
A. Hoff ◽  
H. Frost

Abstract Hoff, A. and Frost, H. 2008. Modelling combined harvest and effort regulations: the case of the Dutch beam trawl fishery for plaice and sole in the North Sea. – ICES Journal of Marine Science, 65: 822–831. Currently, several European fishing fleets are regulated through a combination of harvest and effort control. The two regulation schemes are interrelated, i.e. a given quota limit will necessarily determine the effort used, and vice versa. It is important to acknowledge this causality when assessing combined effort and harvest regulation systems. A bioeconomic feedback model is presented that takes into account the causality between effort and harvest control by switching back and forth between the two, depending on which is the binding rule. The model consists of a biological and an economic operation module, the former simulating stock assessment and quota establishment, and the latter simulating the economic fleet dynamics. When harvest control is binding, catch is evaluated using the biological projection formula, whereas the economics-based Cobb–Douglas production function is used when effort is binding. The method is applied to the Dutch beam trawl fishery for plaice and sole in the North Sea.


Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1615-1625 ◽  
Author(s):  
Robert J. Wilson ◽  
Michael R. Heath

Abstract. Data on Secchi disc depth (the depth at which a standard white disc lowered into the water just becomes invisible to a surface observer) show that water clarity in the North Sea declined during the 20th century, with likely consequences for marine primary production. However, the causes of this trend remain unknown. Here we analyse the hypothesis that changes in the North Sea's wave climate were largely responsible by causing an increase in the concentrations of suspended particulate matter (SPM) in the water column through the resuspension of seabed sediments. First, we analysed the broad-scale statistical relationships between SPM and bed shear stress due to waves and tides. We used hindcasts of wave and current data to construct a space–time dataset of bed shear stress between 1997 and 2017 across the northwest European Continental Shelf and compared the results with satellite-derived SPM concentrations. Bed shear stress was found to drive most of the inter-annual variation in SPM in the hydrographically mixed waters of the central and southern North Sea. We then used a long-term wave reanalysis to construct a time series of bed shear stress from 1900 to 2010. This shows that bed shear stress increased significantly across much of the shelf during this period, with increases of over 20 % in the southeastern North Sea. An increase in bed shear stress of this magnitude would have resulted in a large reduction in water clarity. Wave-driven processes are rarely included in projections of climate change impacts on marine ecosystems, but our analysis indicates that this should be reconsidered for shelf sea regions.


2011 ◽  
Vol 62 (6) ◽  
pp. 722 ◽  
Author(s):  
Jessica Wiegand ◽  
Ewan Hunter ◽  
Nicholas K. Dulvy

A key challenge of the ecosystem approach to fisheries management is to sustain viable populations of large-bodied less-productive vulnerable elasmobranchs that are the by-catch of fisheries that target more productive species. The North Sea population of the thornback ray (Raja clavata) is now mainly confined to the Thames Estuary and surrounding SW North Sea, which is subject to a flatfish trawl fishery. We explored the relative effectiveness of seasonal closures versus size-based landing restrictions using a four-season age-structured model. More than a third of adult thornback rays are currently removed by fishing each year, and without effective management, a further 90% decline within 30 years is likely. A three-season closure of the Thames Estuary was the shortest closure that ensured thornback ray recovery and minimal loss of fishery yield. Minimum and maximum landing size restrictions are nearly as effective at recovering thornback rays but less so at improving yield. While long seasonal closures and full marine protected areas are more effective at ensuring the recovery of thornback rays, length restrictions may be simpler to implement under the current institutional framework and may have less impact on the multispecies trawl fisheries operating in the area.


2019 ◽  
Vol 38 (1) ◽  
pp. 67-81
Author(s):  
Alexander G. Mitlehner

Abstract. Species of Aulacodiscus and Trinacria, two important marine diatom genera with biostratigraphic utility in offshore North Sea exploration and onshore correlation, are identified, described and emended and the North Sea microfaunal zonation scheme is revised accordingly. Occurring mainly as pyritised diatom moulds or steinkerns, detailed scanning electron microscope (SEM) analysis of several specimens, formerly in open nomenclature, has allowed the correct taxonomic identification of pyritised morphologies found to belong to the genus Aulacodiscus, including A. allorgei, A. heterostictus, A. insignis, A. singilewskyanus, A. subexcavatus and A. suspectus. The important marker species Trinacria regina is emended. SEM studies, using specimens preserved in pyrite and original silica, have shed further light on the varying forms and frustule morphology of Trinacria regina so that valves and frustules formerly thought to represent separate species are now found to be grouped within this taxon; SEM studies have shown that many of these variations represent different valves within a chain, whilst others may signify ecophenotypic variants. Emendments are therefore made to clarify the taxonomic status of different variants within T. regina, important in the Palaeocene–Eocene boundary interval onshore and offshore such as the Sele and Balder formations and the Fur Formation diatomite of Jutland, Denmark. Species of taxa formerly in open nomenclature are now assigned to Aulacodiscus insignis, which are important offshore markers in offshore late Oligocene to early Miocene sediments in northwest Europe.


2019 ◽  
Author(s):  
Robert J. Wilson ◽  
Michael R. Heath

Abstract. Data on Secchi disk-depth (the depth at which a standard white disk lowered into the water just becomes invisible to a surface observer) show that water clarity in the North Sea declined during the 20th century, with likely consequences for marine primary production. However, the causes of this trend remain unknown. Here we analyze the hypothesis that changes in the North Sea's wave climate were largely responsible, by increasing the concentrations of suspended particulate matter (SPM) in the water column through re-suspension of seabed sediments. First, we analyzed the broad-scale statistical relationships between SPM and bed shear stress due to waves and tides. We used hindcasts of wave and current data to construct a space-time dataset of bed shear stress between 1997 and 2017 across the northwest European Continental Shelf, and compared the results with satellite-derived SPM concentrations. Bed shear stress was found to drive most of the inter-annual variation in SPM in the hydrographically mixed waters of the central and southern North Sea. We then used a long-term wave reanalysis to construct a time series of bed shear stress from 1900 to 2010. This shows that bed shear stress increased significantly across the shelf over this period, explaining more than half of the observed decline in water clarity over this period. Wave-driven processes are rarely included in projections of climate change impacts on marine ecosystems, but our analysis indicates that this should be reconsidered for shelf sea regions.


Sign in / Sign up

Export Citation Format

Share Document