Who is fishing on what stock: population-of-origin of individual cod (Gadus morhua) in commercial and recreational fisheries

2018 ◽  
Vol 75 (6) ◽  
pp. 2153-2162 ◽  
Author(s):  
Per Erik Jorde ◽  
Alf Ring Kleiven ◽  
Marte Sodeland ◽  
Esben Moland Olsen ◽  
Keno Ferter ◽  
...  

Abstract Atlantic cod (Gadus morhua) in Skagerrak are structured into distinct ecotypes or stock components that have been severely depleted over the past decades. To improve our understanding of how local commercial and recreational fisheries influence cod stocks, we investigated whether these user groups target different stock components of cod. Cod were sampled from the recreational rod and line fishery and from commercial shrimp trawlers catching cod as by-catch. Based on a large set of single nucleotide polymorphisms (SNPs), we defined a subset of 27 semi-diagnostic SNPs designed to discriminate between two cod stock components: “inner fjord” cod and “North Sea” cod, designated by their dominant habitat preferences. Genetic assignments of fishery-caught cod indicated that 4% of individuals caught by shrimp trawlers belonged to the inner fjord cod component and 96% to the North Sea, whereas among cod caught by recreational fishers, the estimated percentages were 11.8 and 88.2%, respectively. Our findings confirm the existence of two sympatric cod stock components in coastal Skagerrak, indicating that existing management units are biologically inappropriate and should be reconsidered. Furthermore, more attention should be given to recreational angling to reduce fishing mortality on the depleted inner fjord cod component.

2007 ◽  
Vol 64 (2) ◽  
pp. 304-313 ◽  
Author(s):  
Jan-Jaap Poos ◽  
Adriaan D Rijnsdorp

A temporarily closed area established to protect spawning Atlantic cod (Gadus morhua) in the North Sea allowed us to study the response of the Dutch beam trawl fleet exploiting common sole (Solea solea) and plaice (Pleuronectes platessa). A number of vessels left the North Sea 1 month earlier than the normal seasonal pattern. The vessels that continued fishing in the North Sea were concentrated in the remaining open areas. In the first week after the closure, the catch rate decreased by 14%, coinciding with an increase in crowding of 28%. Area specialisation affected the response of individual vessels because vessels without prior experience in the open areas showed a larger decline in catch rate compared with vessels that previously fished in these open areas and were more likely to stop fishing during the closed period. The decrease in catch rate in response to the increase in competitor density allowed us to estimate the strength of the interference competition.


2018 ◽  
Vol 76 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Henrik Svedäng ◽  
Julia M I Barth ◽  
Anders Svenson ◽  
Patrik Jonsson ◽  
Sissel Jentoft ◽  
...  

Abstract Dramatic and persistent reductions in Atlantic cod (Gadus morhua) are common in many coastal areas. While offshore cod stocks still were abundant and productive, the Swedish west coast showed signs of diminishing adult cod abundance at the beginning of the 1980s, where the local cod component was considered to be extirpated. To survey the present cod spawning activity and stock composition, we initiated egg trawling over two consecutive years (203 hauls in total) in combination with population genetic analyses (425 individually genotyped eggs). Here, we provide evidence of cod spawning at the Swedish Skagerrak coast, suggesting recolonization or that local cod has recovered from a nearly depleted state. Early stage eggs were found inside fjords too far to have been transported by oceanic drift from offshore spawning areas. The cod eggs were genetically similar in early to late life-stages and cluster mainly with the local adult cod, indicating that eggs and adults belong to the same genetic unit. The cod eggs were genetically differentiated from adult North Sea cod, and, to a lesser degree, also from the Kattegat and Öresund cod, i.e. indicating a possible recovery of local coastal stock. The patterns of the genetic structure in the inshore areas are, however, difficult to fully disentangle, as Atlantic cod in the North Sea-Skagerrak area seem to be a mixture of co-existing forms: local cod completing their entire life cycle in fjords and sheltered areas, and oceanic populations showing homing behaviours. The egg abundances are considerably lower compared with what is found in similar studies along the Norwegian Skagerrak coast. Nevertheless, the discovery of locally spawning cod along the Swedish west coast—although at low biomasses—is an encouraging finding that highlights the needs for endurance in protective measures and of detailed surveys to secure intraspecific biodiversity and ecosystem services.


Author(s):  
David Righton ◽  
Victoria Anne Quayle ◽  
Stuart Hetherington ◽  
Gary Burt

The sub-structure of Atlantic cod (Gadus morhua) stocks in the North Sea has important consequences for fisheries management as the Common Fisheries Policy moves towards a more regional approach. We investigated the movements, distribution and behaviour of cod in the southern North Sea (ICES IVc) and English Channel (ICES VIId) by re-analysing historic data from conventional tagging experiments, and by conducting new experiments with electronic tags. Cod tagged and released in IVc showed a northwards shift in distribution during the feeding season consistent with a homing migration away from spawning grounds along the coasts of the UK and the Netherlands. In contrast, cod tagged and released in VIId did not exhibit a consistent pattern of seasonal movement. Many cod released in VIId were subsequently recaptured close to their release position, although some moved out of the Channel and into the southern North Sea. Overlap between the recapture areas of cod released in the different management areas was no more than 25% in either the spawning or feeding season. Behavioural data from electronic tags suggest that cod in IVc make use of tidal streams to migrate northwards and eastwards in spring, whereas selective tidal stream transport was rarely exhibited by cod tagged and released in VIId. Overall, the evidence suggests that there are behavioural differences between cod in IVc and VIId that limit the mixing of cod from these two areas during the feeding and spawning seasons.


Oceanologia ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 159-163
Author(s):  
Agnieszka Rybczyk ◽  
Przemysław Czerniejewski ◽  
Joanna Rokicka-Praxmajer

2017 ◽  
Vol 74 (6) ◽  
pp. 1561-1573 ◽  
Author(s):  
Kate McQueen ◽  
C. Tara Marshall

AbstractWarming temperatures caused by climate change have the potential to impact spawning phenology of temperate marine fish as some species have temperature-dependent gonadal development. Inter-annual variation in the timing of Atlantic cod (Gadus morhua) spawning in the northern North Sea, central North Sea and Irish Sea was estimated by calculating an annual peak roe month (PRM) from records of roe landings spanning the last three decades. A trend towards earlier PRM was found in all three regions, with estimates of shifts in PRM ranging from 0.9 to 2.4 weeks per decade. Temperatures experienced by cod during early vitellogenesis correlated negatively with PRM, suggesting that rising sea temperatures have contributed to a shift in spawning phenology. A concurrent reduction in the mean size of spawning females excluded the possibility that earlier spawning was due to a shift in size structure towards larger individuals, as large cod spawn earlier than smaller-sized individuals in the North Sea. Further research into the effects of climate change on the phenology of different trophic levels within the North Sea ecosystem should be undertaken to determine whether climate change-induced shifts in spawning phenology will result in a temporal mismatch between cod larvae and their planktonic prey.


2014 ◽  
Vol 59 (2) ◽  
Author(s):  
Foojan Mehrdana ◽  
Qusay Bahlool ◽  
Alf Skovgaard ◽  
Jesper Kuhn ◽  
Per Kania ◽  
...  

AbstractA parasitological investigation was performed on a total of 5380 Atlantic cod larvae, post-larvae and small juveniles sampled from the North Sea during a period of five years. The copepod Caligus elongatus (Von Nordmann, 1832) and the nematode Hysterothylacium aduncum (Rudolphi, 1802) were found at a relatively high prevalence of infection (4.6% and 5.2%, respectively). The infection by both parasites showed annual and spatial variability. C. elongatus showed a higher prevalence in 1992 compared to the following years, whereas the prevalence of H. aduncum increased from 1992 to 2001.We observed a relation between parasite distribution and parameters such as latitude and water depth. Adult digeneans (Lecithaster gibbosus and Derogenes varicus) and larval cestodes were also found with lower infection rates. Since changes of infection levels coincided with increasing North Sea water temperature in the studied period, it is hypothesized that temperature may affect parasite population levels. However, it is likely that other environmental factors may contribute to the observed variations. Absence of infection intensities higher than one nematode per fish in small larvae and post-larvae suggests that host survival may be affected by a high infection pressure. The relatively high levels of infection in the younger stages of cod, and the annual/spatial variability of these infections should be considered in the understanding of the early life dynamics of the species.


2015 ◽  
Vol 73 (2) ◽  
pp. 304-315 ◽  
Author(s):  
José M. González-Irusta ◽  
Peter J. Wright

2011 ◽  
Vol 68 (9) ◽  
pp. 1918-1927 ◽  
Author(s):  
Peter J. Wright ◽  
Colin P. Millar ◽  
Fiona M. Gibb

Abstract Wright, P. J., Millar, C. P., and Gibb, F. M. 2011. Intrastock differences in maturation schedules of Atlantic cod, Gadus morhua. – ICES Journal of Marine Science, 68: 1918–1927. Differences in maturation schedules from three subpopulations of North Sea cod (Gadus morhua) were examined using the demographic probabilistic maturation reaction norm (PMRN) approach. Declines in maturation probability with size and age were evident within the North Sea cod stock, but the magnitude of decline differed among subpopulations. The difference in the rate of decline led to significant spatial differences in recent times. Changes in maturation probability could not be explained by colonization from adjacent regions indicating a local response to conditions. The greatest decline in maturation probability followed the near collapse of regional spawning biomass during the 1980s and 1990s. A new methodology was developed to integrate the effects of temperature and competitive biomass into the estimation of the PMRN. Temperature had a positive effect on maturation probability, but could only partially explain the decreasing trend in PMRN midpoints. Consequently, regional selection for early maturing genotypes provides the most parsimonious explanation for the declines in maturation probability observed. The difference in maturation probability among North Sea cod subpopulations, and the additive contribution of temperature to the estimation of change, underscores the need to account for population structuring and to incorporate temperature as a covariate in future applications of the PMRN.


2008 ◽  
Vol 65 (11) ◽  
pp. 2367-2377 ◽  
Author(s):  
M. W. Pedersen ◽  
D. Righton ◽  
U. H. Thygesen ◽  
K. H. Andersen ◽  
H. Madsen

When geolocating fish based on archival tag data, a realistic assessment of uncertainty is essential. Here, we describe an application of a novel Fokker–Planck-based method to geolocate Atlantic cod ( Gadus morhua ) in the North Sea area. In this study, the geolocation relies mainly on matching tidal patterns in depth measurements when a fish spends a prolonged period of time at the seabed with a tidal database. Each day, the method provides a nonparametric probability distribution of the position of a tagged fish and therefore avoids enforcing a particular distribution, such as a Gaussian distribution. In addition to the tidal component of the geolocation, the model incoporates two behavioural states, either high or low activity, estimated directly from the depth data, that affect the diffusivity parameter of the model and improves the precision and realism of the geolocation significantly. The new method provides access to the probability distribution of the position of the fish that in turn provides a range of useful descriptive statistics, such as the path of the most probable movement. We compare the method with existing alternatives and discuss its potential in making population inference from archival tag data.


Sign in / Sign up

Export Citation Format

Share Document