scholarly journals Stabilization of high order cut finite element methods on surfaces

2019 ◽  
Vol 40 (3) ◽  
pp. 1702-1745 ◽  
Author(s):  
Mats G Larson ◽  
Sara Zahedi

Abstract We develop and analyse a stabilization term for cut finite element approximations of an elliptic second-order partial differential equation on a surface embedded in ${\mathbb{R}}^d$. The new stabilization term combines properly scaled normal derivatives at the surface together with control of the jump in the normal derivatives across faces, and provides control of the variation of the finite element solution on the active three-dimensional elements that intersect the surface. We show that the condition number of the stiffness matrix is $O(h^{-2})$, where $h$ is the mesh parameter. The stabilization term works for linear as well as for higher-order elements and the derivation of its stabilizing properties is quite straightforward, which we illustrate by discussing the extension of the analysis to general $n$-dimensional smooth manifolds embedded in ${\mathbb{R}}^d$, with codimension $d-n$. We also state the properties of a general stabilization term that are sufficient to prove optimal scaling of the condition number and optimal error estimates in energy- and $L^2$-norm. We finally present numerical studies confirming our theoretical results.

2019 ◽  
Vol 221 ◽  
pp. 01003
Author(s):  
Pavel Radchenko ◽  
Stanislav Batuev ◽  
Andrey Radchenko

The paper presents results of applying approach to simulation of contact surfaces fracture under high velocity interaction of solid bodies. The algorithm of erosion -the algorithm of elements removing, of new surface building and of mass distribution after elements fracture at contact boundaries is consider. The results of coordinated experimental and numerical studies of fracture of materials under impact are given. Authors own finite element computer software program EFES, allowing to simulate a three-dimensional setting behavior of complex structures under dynamic loads, has been used for the calculations.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Estaner Claro Romão

The Galerkin Finite Element Method (GFEM) with 8- and 27-node hexahedrons elements is used for solving diffusion and transient three-dimensional reaction-diffusion with singularities. Besides analyzing the results from the primary variable (temperature), the finite element approximations were used to find the derivative of the temperature in all three directions. This technique does not provide an order of accuracy compatible with the one found in the temperature solution; thereto, a calculation from the third order finite differences is proposed here, which provide the best results, as demonstrated by the first two applications proposed in this paper. Lastly, the presentation and the discussion of a real application with two cases of boundary conditions with singularities are proposed.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


2008 ◽  
Vol 583 ◽  
pp. 257-275 ◽  
Author(s):  
Ferdinando Auricchio ◽  
Alessandro Reali

The use of shape memory alloys (SMA) in an increasing number of applications in many ¯elds of engineering, such as biomedical engineering, is leading to a growing interest toward an exhaustive modeling of their macroscopic behavior in order to construct reliable simulation tools for SMA devices. In this paper we review a robust three-dimensional model able to reproduce both pseudo-elastic and shape-memory behaviors and we report numerical studies where it is used for the simulation of SMA-based biomedical devices.


Sign in / Sign up

Export Citation Format

Share Document