Phase-Variable Expression Of The 145-Kda Surface Protein Of Brazilian Purpuric Fever Case-Clone Strains Of Haemophilus Influenzae Biogroup Aegyptius

1995 ◽  
Vol 171 (3) ◽  
pp. 713-717 ◽  
Author(s):  
L. G. Rubin
2005 ◽  
Vol 73 (4) ◽  
pp. 2213-2221 ◽  
Author(s):  
Ruth Griffin ◽  
Andrew D. Cox ◽  
Katherine Makepeace ◽  
James C. Richards ◽  
E. Richard Moxon ◽  
...  

ABSTRACT The phase-variable locus lex2 is required for expression of a Haemophilus influenzae lipopolysaccharide (LPS) epitope of previously unknown structure. This epitope, which is reactive with monoclonal antibody (MAb) 5G8, has been associated with virulence of type b strains. When strain RM118 (from the same source as strain Rd), in which the lex2 locus and MAb 5G8 reactivity are absent, was transformed with lex2 DNA, transformants that were reactive with MAb 5G8 were obtained. Surprisingly, the 5G8 reactivity of these transformants was phase variable, although the lex2 locus lacked tetrameric repeats and was constitutively expressed. This phase variation was shown to be the result of phase-variable expression of phosphorylcholine (PCho) such that MAb 5G8 reacted only in the absence of PCho. Structural analysis showed that, compared to RM118, the lex2 transformant had acquired a tetrasaccharide, Gal-α1,4-Gal-β1,4-Glc-β1,4-Glc-β1,4, linked to the proximal heptose (HepI). A terminal GalNAc was detected in a minority of glycoforms. LPS derived from a mutant of RM7004, a virulent type b strain which naturally expresses lex2 and has LPS containing the same tetrasaccharide linked to HepI as the sole oligosaccharide extension from the inner core, confirmed that GalNAc is not a part of the MAb 5G8-reactive epitope. Thus, MAb 5G8 specifically binds to the structure Gal-α1,4-Gal-β1,4-Glc-β1,4-Glc-β attached via a 1,4 linkage to HepI of H. influenzae LPS, and we show that the ability to synthesize this novel tetrasaccharide was associated with enhanced bacterial resistance to complement-mediated killing.


2008 ◽  
Vol 54 (4) ◽  
pp. 281-290 ◽  
Author(s):  
Hussein Masoud ◽  
E. Richard Moxon ◽  
James C. Richards

The structures of lipopolysaccharides (LPSs) of lic1 and lic1/lic2 mutants from Haemophilus influenzae type b strain Eagan (RM153) were investigated using methylation analysis, electrospray ionization – mass spectrometry, and nuclear magnetic resonance spectroscopy on O-deacylated, O- and N-deacylated core oligosaccharide (OS); and deacylated, dephosphorylated, and terminally reduced samples. The backbone OS derived from the major LPS glycoforms were determined to consist of the inner-core triheptosyl unit, l-α-d-Hepp-(1-2)-l-α-d-Hepp-(1-3)-l-α-d-Hepp-(1-, common to all H. influenzae strains investigated to date that is linked to the lipid A region of the molecule via a Kdo residue to which β-d-Glcp and β-d-Galp residues are attached in 1,4 and 1,2 linkages to the proximal (HepI) and distal (HepIII) heptose residues, respectively. It was found that the lic1 mutant predominately elaborates the Hex4 LPS glycoforms previously identified in the parent strain where a β-d-Glcp-(1-4)-α-d-Glcp unit is linked in a 1,3 linkage to the central heptose (HepII) of the triheptosyl moiety. The lic1 locus consists of 4 genes (lic1A to lic1D) in a single transcriptional unit that directs phase variable expression of phosphocholine. The lic1A gene is phased off in the RM153 isolate of strain Eagan. LPS from the double mutant, lic1/lic2 had a similar structure to that of lic1 mutant except that there was no chain extension from the central heptose in the inner core (HepII). The lic2 locus consists of 4 genes (lic2A to lic2D). Our structural data were consistent with the proposed function of lic2C, providing the first definitive evidence for its role as the glycosyltransferase required for chain initiation from HepII. The presence of an O-acetyl group at O-3 of the distal heptose (HepIII) was elucidated by 1H NMR on the mild acid liberated core OS samples.


2009 ◽  
Vol 77 (6) ◽  
pp. 2376-2384 ◽  
Author(s):  
M. E. Deadman ◽  
P. Hermant ◽  
M. Engskog ◽  
K. Makepeace ◽  
E. R. Moxon ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae is a commensal that frequently causes otitis media and respiratory tract infections. The lex2 locus encodes a glycosyltransferase that is phase variably expressed and contributes to the significant intrastrain heterogeneity of lipopolysaccharide (LPS) composition in H. influenzae. In serotype b strains, Lex2B adds the second β-glucose in the oligosaccharide extension from the proximal heptose of the triheptose inner core backbone; this extension includes a digalactoside that plays a role in resistance of the bacteria to the killing effect of serum. As part of our studies of the structure and genetics of LPS in nontypeable H. influenzae, we show here that there are allelic polymorphisms in the lex2B sequence that correlate with addition of either a glucose or a galactose to the same position in the LPS molecule across strains. Through exchange of lex2 alleles between strains we show that alteration of a single amino acid at position 157 in Lex2B appears to be sufficient to direct the alternative glucosyl- or galactosyltransferase activities. Allelic exchange strains express LPS with altered structure and biological properties compared to the wild-type LPS. Thus, Lex2B contributes to both inter- and intrastrain LPS heterogeneity through its polymorphic sequences and phase-variable expression.


2005 ◽  
Vol 73 (10) ◽  
pp. 7022-7026 ◽  
Author(s):  
Ruth Griffin ◽  
Chris D. Bayliss ◽  
Mark A. Herbert ◽  
Andrew D. Cox ◽  
Katherine Makepeace ◽  
...  

ABSTRACT Digalactoside (galα-1-4 galβ) structures of the lipopolysaccharide (LPS) of Haemophilus influenzae are implicated in virulence. A confounding factor is that tetranucleotide repeats within the lic2A, lgtC, and lex2 genes mediate phase-variable expression of the digalactosides. By deleting these repeats, we constructed recombinant strains of RM153 constitutively expressing either one or two LPS digalactosides. Expression of two digalactosides, rather than one, was associated with increased virulence of H. influenzae in vivo.


Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3165-3175 ◽  
Author(s):  
Ruth Griffin ◽  
Andrew D. Cox ◽  
Katherine Makepeace ◽  
James C. Richards ◽  
E. Richard Moxon ◽  
...  

The locus lex2, comprising lex2A and lex2B, contributes to the phase-variable expression of lipopolysaccharide (LPS) of Haemophilus influenzae and was found to be present in 74 % of strains investigated. lex2A contains 5′-GCAA repeats which vary in number from 4 to 46 copies between strains. The locus was cloned from the serotype b strains RM7004 and RM153 and showed >99 % nucleotide sequence identity between these strains and the published lex2 sequence. Disruption of the lex2B gene in strain RM7004 resulted in truncation of some LPS glycoforms, shown by gel fractionation, with only one glycoform reacting with a digalactoside-specific monoclonal antibody, 4C4, compared with four LPS glycoforms in the more elongated LPS of the parent strain. Mass spectrometry and NMR analyses of LPS from the lex2B mutant revealed loss of the terminal digalactoside as well as the second β-glucose extending from the first heptose of the inner core. The authors conclude that Lex2B is the β-(1-4)-glucosyltransferase that adds the second β-glucose to the first β-glucose as part of the oligosaccharide extension from the first heptose of the LPS of strain RM7004. Investigation of the expression of the lex2 locus indicated that the genes are co-transcribed and that both reading frames are required for addition of this second β-glucose in a phase-variable manner.


1999 ◽  
Vol 181 (18) ◽  
pp. 5865-5870 ◽  
Author(s):  
Zhen Ren ◽  
Hongfan Jin ◽  
Paul W. Whitby ◽  
Daniel J. Morton ◽  
Terrence L. Stull

ABSTRACT Haemophilus influenzae utilizes hemoglobin and hemoglobin-haptoglobin as heme sources. The H. influenzaehemoglobin- and hemoglobin-haptoglobin binding protein genes,hgpA, hgpB, and hgpC, contain lengths of tetrameric CCAA repeats. Using an hgpA-lacZtranslational gene fusion, we demonstrate phase-variable expression oflacZ associated with alteration in the length of the CCAA repeat region.


2000 ◽  
Vol 68 (2) ◽  
pp. 871-876 ◽  
Author(s):  
Li Liu ◽  
Kevin Dybvig ◽  
Victor S. Panangala ◽  
Vicky L. van Santen ◽  
Christopher T. French

ABSTRACT Mycoplasma gallisepticum, the cause of chronic respiratory infections in the avian host, possesses a family of M9/pMGA genes encoding an adhesin(s) associated with hemagglutination. Nucleotide sequences of M9/pMGA gene family members indicate extensive sequence similarity in the promoter regions of both the transcribed and silent genes. The mechanism that regulates M9/pMGA gene expression is unknown, but studies have revealed an apparent correlation between gene expression and the number of tandem GAA repeat motifs located upstream of the putative promoter. In this study, transposon Tn4001was used as a vector with the Escherichia coli lacZ gene as the reporter system to examine the role of the GAA repeats in M9/pMGA gene expression in M. gallisepticum. A 336-bp M9 gene fragment (containing the GAA repeat region, the promoter, and the translation start codon) was amplified by PCR, ligated with alacZ gene from E. coli, and inserted into the Tn4001-containing plasmid pISM2062. This construct was transformed into M. gallisepticum PG31. Transformants were filter cloned on agar supplemented with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal) to monitor lacZ gene expression on the basis of blue/white color selection. Several cycles of filter cloning resulted in cell lineages in which lacZ gene expression alternated between the On and Off states in successive generations of progeny clones. The promoter regions of the M9-lacZ hybrid genes of individual progeny clones were amplified by PCR and sequenced. The only differences between the promoter regions of the blue and white colonies were in the number of GAA repeats. Clones that expressedlacZ had exactly 12 tandem copies of the GAA repeat. Clones that did not express lacZ invariably had either more than 12 (14 to 16) or fewer than 12 (5 to 11) GAA repeats. Southern analysis of M. gallisepticum chromosomal DNA confirmed that the phase-variable expression of the lacZ reporter gene was not caused by Tn4001 transposition. These data strongly indicate that changes in the length of the GAA repeat region are responsible for regulating M9/pMGA gene expression.


Sign in / Sign up

Export Citation Format

Share Document