The in-vitro activity and disc susceptibility testing of clarithromycin and its 14-hydroxy metabolite

1991 ◽  
Vol 27 (2) ◽  
pp. 161-170 ◽  
Author(s):  
M. N. Logan ◽  
J. P. Ashby ◽  
J. M. Andrews ◽  
R. Wise
1999 ◽  
Vol 10 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Donald E Low ◽  
Joyce de Azavedo ◽  
Canadian Bacterial Surveillance Network ◽  
Ross Davidson

OBJECTIVE: To determine the in vitro activity of cefepime against multidrug-resistant Gram-negative bacilli and Gram-positive cocci obtained from an ongoing cross-Canada surveillance study.DESIGN: Clinical isolates of aerobic Gram-negative bacilli with inducible and constitutive chromosomally mediated cephalosporinases, viridans group streptococci andStreptococcus pneumoniaewere collected from laboratories serving hospitals, nursing homes and physician offices in the community from across Canada during 1996 and 1997. Laboratories were asked to submit only clinically relevant nonduplicate isolates for susceptibility testing. In vitro antimicrobial susceptibility testing was carried out on all isolates of Gram-negative and viridans group streptococci.S pneumoniaewere characterized as penicillin susceptible, intermediately resistant or highly resistant. Nonsusceptible isolates were defined as being intermediately or highly resistant (minimal inhibitory concentrations [MIC] greater than 0.06 mg/L). Only isolates ofS pneumoniaethat were nonsusceptible to penicillin were selected for further study. MICs were determined using a microbroth dilution technique according to the National Committee of Clinical Laboratory Standards.RESULTS: A total of 727 Gram-negative bacilli samples were collected. No resistance to cefepime was detected withCitrobacter freundii,Serratia marcescens,Morganella morganiiandEnterobacterspecies. Of these strains,Enterobacterspecies andC freundiiwere the most resistant to ceftazidime, cefotaxime and ceftriaxone with MIC90Sof 32 mg/L or greater and resistance rates of 6% or greater. Resistance rates ofPseudomonas aeruginosaandAcinetobacterspecies to cefepime were 4.8% and 3%, respectively. The two organisms had similar rates of resistance to ceftazidime. Less than 3% of the Gram-negative bacilli were resistant to imipenem and meropenem. There were 153 viridans group streptococci, of which 22 (14.4%) were resistant to penicillin. Of 1287S pneumoniaesamples, 193 (15%) were nonsusceptible to penicillin. Cefepime, ceftriaxone and cefotaxime had comparable activity against all isolates of viridans group streptococci andS pneumoniae.CONCLUSIONS: Cefepime demonstrated excellent in vitro activity against Gram-negative bacilli with inducible and constitutive chromosomally mediated cephalosporinases, and had equal or superior activity versus comparator beta-lactams against all isolates of viridans group streptococci andS pneumoniae.


2020 ◽  
Vol 75 (12) ◽  
pp. 3582-3585
Author(s):  
Olga Rivero-Menendez ◽  
Manuel Cuenca-Estrella ◽  
Ana Alastruey-Izquierdo

Abstract Objectives To evaluate the in vitro activity of olorofim, a new broad-spectrum antifungal with a novel mechanism of action, against a collection of 123 Spanish clinical isolates belonging to five Scedosporium species and Lomentospora prolificans. Methods The activity of olorofim against Scedosporium apiospermum (n = 30), Scedosporium boydii (n = 30), Scedosporium ellipsoideum (n = 10), Scedosporium aurantiacum (n = 20), Scedosporium dehoogii (n = 3) and Lomentospora prolificans (n = 30) was compared with that of amphotericin B, voriconazole, isavuconazole and micafungin by performing EUCAST and CLSI reference methods for antifungal susceptibility testing. Results Amphotericin B and isavuconazole showed MICs ≥2 mg/L for all the species evaluated and voriconazole was moderately active (GM, MIC50 and MIC90 values ≤2 mg/L) against all of them except L. prolificans. Micafungin was effective against S. apiospermum complex strains, but exhibited elevated MECs for S. dehoogii and S. aurantiacum. Olorofim showed low MICs for all the Scedosporium strains tested (GM values were lower than 0.130 and 0.339 by the EUCAST method and the CLSI method, respectively, for all of the species), including those belonging to the MDR species L. prolificans, for which GM values were 0.115 and 0.225 mg/L by the EUCAST method and the CLSI method, respectively, while the GMs for the rest of the antifungals evaluated were higher than 3.732 mg/L using both methodologies. Conclusions Olorofim displayed promising in vitro activity against the Scedosporium and L. prolificans strains tested, some of which have reduced susceptibility to the antifungals that are currently in use.


1987 ◽  
Vol 25 (7) ◽  
pp. 1186-1190 ◽  
Author(s):  
G Beskid ◽  
V Fallat ◽  
J Siebelist ◽  
J W Durkin ◽  
E R Lipschitz ◽  
...  

2021 ◽  
Vol 23 (3) ◽  
pp. 264-278 ◽  
Author(s):  
Mikhail V. Edelstein ◽  
Elena Yu. Skleenova ◽  
Ivan V. Trushin ◽  
Alexey Yu. Kuzmenkov ◽  
Alexey А. Martinovich ◽  
...  

Objective. To assess the in vitro activity of ceftazidime-avibactam against clinical Enterobacterales and Pseudomonas aeruginosa isolates in various regions of Russia based on results of local susceptibility testing by disk diffusion method. Materials and Methods. Overall, 160 laboratories located in 61 Russian cities participated in this surveillance during 2018-2020. All consecutive clinical isolates of Enterobacterales and Pseudomonas aeruginosa in each participating laboratory were included in the study. Ceftazidime-avibactam susceptibility testing was done by disc-diffusion method in accordance with current EUCAST recommendations. Susceptibility data for carbapenems and III-IV generation cephalosporins, as well as results of carbapenemases detection, were also reported, if available. All the data were recorded in electronic case report form developed on the OpenClinica online platform (www.openclinica.com). Data analysis and reporting were done using AMRcloud online platform (https://amrcloud.net/). Results. In total, we received information on antimicrobial susceptibility of 22,121 isolates, including 17,456 (78.9%) Enterobacterales and 4,665 (21.1%) P. aeruginosa. Less than 9% of Enterobacterales isolates were resistant to ceftazidime-avibactam. At the same time rates of resistance to ceftazidime, cefotaxime, cefepime, ertapenem, imipenem, and meropenem were 54.1%, 58.9%, 59.4%, 41.4%, 23.9%, and 21.3%. Among Enterobacterales the highest level of resistance to ceftazidime-avibactam was detected in K. pneumoniae (16.5%), lowest – in E. coli (2.1%). Some increase of resistance to ceftazidimeavibactam was noted during the study – from 7.8% in 2018-2019 to 9.6% in 2020 (p = 0.0001). Rate of resistance to ceftazidime-avibactam in P. aeruginosa was 33.1%. At the same time rates of resistance to ceftazidime, cefepime, imipenem, and meropenem were 51.1%, 54.5%, 50%, and 47.3%. During the study there was statistically significant decrease in resistance to ceftazidime-avibactam in P. aeruginosa (p = 0.0001). Resistance rates for all beta-lactams for both Enterobacterales and P. aeruginosa were higher in nosocomial isolates than in community-acquired isolates. Conclusions. Ceftazidime-avibactam demonstrated significantly higher in vitro activity against Enterobacterales and P. aeruginosa Russian clinical isolates comparing with commonly used carbapenems and extended spectrum cephalosporins. Access for all study data available at the AMRcloud online platform (https://amrcloud.net/ru/project/cazavi-1-2/).


Apmis ◽  
2010 ◽  
Vol 118 (1) ◽  
pp. 66-73 ◽  
Author(s):  
MATHIAS RATHE ◽  
LISE KRISTENSEN ◽  
SVEND ELLERMANN-ERIKSEN ◽  
MARIANNE KRAGH THOMSEN ◽  
HELGA SCHUMACHER

1996 ◽  
Vol 8 (3) ◽  
pp. 332-336 ◽  
Author(s):  
Sarah A. Salmon ◽  
Jeffrey L. Watts ◽  
Robert J. Yancey

Ceftiofur (XNL) and its primary metabolite, desfuroylceftiofur (DXNL), were evaluated for in vitro activity against 539 isolates from veterinary sources. Actinobacillus pleuropneumoniae, Pasteurella spp., Haemophilus somnus, Salmonella spp., Escherichia coli, staphylococci, and streptococci were tested. Overall, XNL and DXNL were equivalent in activity against the gram-negative organisms with all minimum inhibitory concentrations (MICs) within 1 serial dilution. Against the staphylococci, MIC differences of 2–3 serial dilutions were detected with an MIC90 for XNL and DXNL of 1.0 and 4.0–8.0 g/ml, respectively. Although the MIC90 obtained for Streptococcus suis for each compound was within 1 dilution, the MIC values against individual strains were 2–3 dilutions greater for DXNL than for XNL. The MICs obtained with the bovine and equine streptococci for DXNL (MIC90 = 0.03 g/ml) were 5 serial dilutions higher than those obtained for XNL (MIC90 £ 0.0019). Although DXNL was less active than XNL against the streptococci, these differences were not clinically important because both XNL and DXNL were highly active for these bacteria. Although these differences are of little importance with the streptococci, they may have important implications for susceptibility testing of the staphylococci. In conclusion, with the exception of the staphylococci, both XNL and DXNL were highly active against the organisms tested, with MICs for both compounds several fold lower than plasma levels achieved during dosing of XNL.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S581-S582
Author(s):  
Patrick James Nolan ◽  
Tiffeny Smith ◽  
James D Finklea ◽  
Leah Cohen ◽  
Raksha Jain

Abstract Background Pseudomonas aeruginosa is a commonly isolated pathogen in adults with cystic fibrosis (CF). Antimicrobial resistance is an escalating problem due to chronic colonization and frequent antimicrobial exposure. Ceftolozane–tazobactam (C/T) and ceftazidime–avibactam (CZA) exhibit promising activity against antimicrobial-resistant organisms, including P. aeruginosa. In this study, we compared in vitro activity of C/T and CZA against P. aeruginosa isolated from respiratory cultures obtained from adult patients with CF. Methods This is a retrospective study of respiratory cultures positive for P. aeruginosa collected from adult CF patients between January 1, 2015 to November 30, 2018. The first isolate per patient per year that underwent susceptibility testing for C/T, CZA, and colistin were included in the study. All isolates underwent in-house susceptibility testing for 9 anti-pseudomonal agents according to the methodology established by the Clinical Laboratory Standards Institute (CLSI). Susceptibility testing of C/T, CZA, and colistin were performed by a reference lab. Isolates were classified into 3 drug-resistant categories using the following definition: multidrug-resistant (MDR) non-susceptible (NS) to ≥1 agent in ≥3 different antimicrobial classes, extensive drug-resistant (XDR) NS to 4 or 5 different classes, and pan drug-resistant (PDR) NS to all 6 classes except colistin. Results Forty-two P. aeruginosa respiratory isolates from 32 patients with CF were included. The overall susceptibility to C/T and CZA was 59.5% and 42.9%, respectively. Thirty-eight (90%) isolates were considered MDR with susceptibility of 55.3% to C/T and 44.7% to CZA. Among the 11 XDR isolates, susceptibility to C/T was 81.8% vs. CZA 72.7%. Susceptibility to C/T vs. CZA was also higher (37.5% vs. 25%) among the 24 PDR isolates. Conclusion Among P. aeruginosa isolated from CF respiratory cultures, C/T appears to have better in vitro activity compared with CZA, and remained true among isolates considered XDR and PDR. These results suggest using C/T while awaiting susceptibilities when standard anti-pseudomonal agents cannot be used. Future studies evaluating clinical outcomes for the treatment of pulmonary CF exacerbations are needed to assess the applicability of in vitro susceptibility data. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document