scholarly journals The in vitro activity of polymyxin B and tigecycline alone and combination with other antibiotics against carbapenem-resistant Enterobacter cloacae complex isolates, including high-risk clones

2019 ◽  
Vol 7 (23) ◽  
pp. 779-779
Author(s):  
Yongxin Zhao ◽  
Chunjiang Li ◽  
Jisheng Zhang ◽  
Yanjun Fu ◽  
Kewang Hu ◽  
...  
2020 ◽  
Vol 75 (9) ◽  
pp. 2609-2615 ◽  
Author(s):  
Yawei Zhang ◽  
Chunjiang Zhao ◽  
Qi Wang ◽  
Xiaojuan Wang ◽  
Hongbin Chen ◽  
...  

Abstract Background SPR206 is a novel polymyxin analogue. Activity against clinical isolates is little documented. Methods A collection of 200 MDR, carbapenem-resistant, tigecycline-resistant, colistin-resistant and non-MDR clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Stenotrophomonas maltophilia was obtained from 50 centres across China (2016–17). All isolates were derived from respiratory tract, urine and blood samples. Strains were purposely selected on the basis of phenotypes, genotypes and specimen origins. MICs of SPR206 and other antimicrobials were determined. Results SPR206 was active against all bacteria tested except colistin-resistant isolates. The MIC50/90 values of SPR206 for colistin-resistant strains were comparable to known polymyxins (16/128 versus 8/128 mg/L). SPR206 exhibited potent activity against colistin-susceptible OXA-producing A. baumannii (MIC50/90 = 0.064/0.125 mg/L), NDM-producing Enterobacteriaceae (MIC50/90 = 0.125/0.25 mg/L) and KPC-2-producing Enterobacteriaceae (MIC50/90 = 0.125/0.5 mg/L). In fact, SPR206 was the most potent agent tested, with 2- to 4-fold lower MICs than colistin and polymyxin B for A. baumannii, P. aeruginosa and Enterobacteriaceae. Additionally, MIC values of SPR206 (MIC50/90 = 0.064/0.125 mg/L) were 16- to 32-fold lower than those of tigecycline (MIC50/90 = 2/2 mg/L) for tigecycline-susceptible carbapenem-resistant A. baumannii. Conclusions SPR206 showed good in vitro activity against MDR, tigecycline-resistant and non-MDR clinical isolates of Gram-negative pathogens. SPR206 also exhibited superior potency to colistin and polymyxin B, with 2- to 4-fold lower MIC50/90 values.


PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e18485 ◽  
Author(s):  
Tze-Peng Lim ◽  
Thean-Yen Tan ◽  
Winnie Lee ◽  
S. Sasikala ◽  
Thuan-Tong Tan ◽  
...  

2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Frédéric Robin ◽  
Michel Auzou ◽  
Richard Bonnet ◽  
Romain Lebreuilly ◽  
Christophe Isnard ◽  
...  

ABSTRACT The study evaluated the in vitro activity of ceftolozane-tazobactam (C/T) against 94 unique clinical isolates of Enterobacter cloacae complex (ECC). No difference was observed according to the ECC cluster. The in vitro activity greatly varied depending on the β-lactamase-producing profile: 100%, 67%, and 19% of wild-type, extended-spectrum β-lactamase (ESBL)-producing, and AmpC-overproducing strains, respectively, were susceptible to C/T. The use of C/T could be of interest for the treatment of some infections caused by ESBL-producing AmpC-nonoverexpressing ECC isolates.


Author(s):  
David W Wareham ◽  
M H F Abdul Momin ◽  
Lynette M Phee ◽  
Michael Hornsey ◽  
Joseph F Standing

Abstract Background β-Lactam (BL)/β-lactamase inhibitor (BLI) combinations are widely used for the treatment of Gram-negative infections. Cefepime has not been widely studied in combination with BLIs. Sulbactam, with dual BL/BLI activity, has been partnered with very few BLs. We investigated the potential of cefepime/sulbactam as an unorthodox BL/BLI combination against MDR Gram-negative bacteria. Methods In vitro activity of cefepime/sulbactam (1:1, 1:2 and 2:1) was assessed against 157 strains. Monte Carlo simulation was used to predict the PTA with a number of simulated cefepime combination regimens, modelled across putative cefepime/sulbactam breakpoints (≤16/≤0.25 mg/L). Results Cefepime/sulbactam was more active (MIC50/MIC90 8/8–64/128 mg/L) compared with either drug alone (MIC50/MIC90 128 to >256 mg/L). Activity was enhanced when sulbactam was added at 1:1 or 1:2 (P < 0.05). Reduction in MIC was most notable against Acinetobacter baumannii and Enterobacterales (MIC 8/8–32/64 mg/L). Pharmacokinetic/pharmacodynamic modelling highlighted that up to 48% of all isolates and 73% of carbapenem-resistant A. baumannii with a cefepime/sulbactam MIC of ≤16/≤8 mg/L may be treatable with a high-dose, fixed-ratio (1:1 or 1:2) combination of cefepime/sulbactam. Conclusions Cefepime/sulbactam (1:1 or 1:2) displays enhanced in vitro activity versus MDR Gram-negative pathogens. It could be a potential alternative to existing BL/BLI combinations for isolates with a cefepime/sulbactam MIC of 16/8 mg/L either as a definitive treatment or as a carbapenem-sparing option.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S416-S417 ◽  
Author(s):  
Meredith Hackel ◽  
Dan Sahm

Abstract Background VNRX-5133 is a novel cyclic boronate-based broad-spectrum β-lactamase inhibitor with potent and selective direct inhibitory activity against both serine- and metallo-β-lactamases (Ambler Classes A, B, C, and D). In this analysis, we evaluated the activity of cefepime (FEP) in combination with VNRX-5133 and comparators against 1,120 recent Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Methods MICs of FEP with VNRX-5133 fixed at 4 µg/mL (FEP/VNRX-5133) were determined following CLSI M07-A10 guidelines against 1,120 Enterobacteriaceae from community and hospital infections collected globally in 2012–2013. Resistant phenotypes were based on 2017 CLSI breakpoints. As FEP/VNRX-5133 breakpoints have not yet been established, the FEP 2 g q8h susceptible dose-dependent (SDD) breakpoint of ≤8 µg/mL was considered for comparative purposes. Results FEP/VNRX-5133 showed potent in vitro activity against drug-resistant subsets of Enterobacteriaceae, with MIC90 values ranging from 1 µg/mL against ceftazidime-, levofloxacin-, or piperacillin–tazobactam-nonsusceptible isolates, to 8 µg/mL against meropenem-nonsusceptible isolates. FEP/VNRX-5133 inhibited &gt;93% of all resistant subsets at ≤8 µg/mL. Conclusion Cefepime in combination with VNRX-5133 demonstrated potent in vitro activity against Enterobacteriaceae, including cephalosporin-, fluoroquinolone- and carbapenem-resistant (CRE) isolates. Because this drug combination exhibited substantial potential for the treatment of infections caused by isolates often resistant to first-line therapy, further development is warranted. Disclosures M. Hackel, IHMA, Inc.: Employee, Salary. VenatoRx: Consultant, Consulting fee. D. Sahm, IHMA, Inc.: Employee, Salary. VenatoRx: Consultant, Consulting fee.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S412-S413
Author(s):  
Michael R Jacobs ◽  
Caryn E Good ◽  
Ayman M Abdelhamed ◽  
Daniel D Rhoads ◽  
Kristine M Hujer ◽  
...  

Abstract Background Plazomicin is a next-generation aminoglycoside with in vitro activity against multidrug-resistant Gram-negative species, including carbapenem-resistant isolates. The Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE) is a federally funded, prospective multicenter consortium of 20 hospitals from nine US healthcare systems to track carbapenem-resistant Enterobacteriaceae. Methods Minimum inhibitory concentrations (MICs) of plazomicin were determined by broth microdilution according to current CLSI guidelines against a collection of 697 carbapenem-resistant Klebsiella pneumoniae with defined carbapenem resistance mechanisms, including KPC and OXA carbapenemases. Isolates were submitted by participating CRACKLE centers. Results Carbapenemases present in study isolates included KPC-2 (n = 323), KPC-3 (n = 364), KPC-4 (n = 2), OXA-48 like (n = 7), and NDM (n = 1). Plazomicin MICs ranged from ≤0.12 to &gt;32 mg/L, with MIC50 and MIC90 values of 0.25 and 1 mg/L, respectively (figure). MICs of 689 (98.8%) isolates were ≤4 mg/L, while MICs of the remaining eight isolates were &gt;32 mg/L. Plazomicin MICs were related to specific carbapenemases present in isolates: of eight isolates with MICs &gt;32 mg/L, seven contained OXA-48 like and one contained KPC-3, suggesting that these isolates possess an aminoglycoside-resistance mechanism on the same plasmid as their carbapenemase gene, such as a 16S ribosomal RNA methyltransferase, against which plazomicin is not active. Conclusion Plazomicin has good in vitro potency against a collection of carbapenemase-producing K. pneumoniae, with MIC90 value of 1 mg/L and MICs of ≤4 mg/L for 98.9% of isolates. Disclosures M. R. Jacobs, Achaogen: Investigator, Research grant. Shionogi: Investigator, Research grant. L. Connolly, Achaogen, Inc.: Consultant, Consulting fee. K. M. Krause, Achaogen: Employee, Salary. S. S. Richter, bioMerieux: Grant Investigator, Research grant. BD Diagnostics: Grant Investigator, Research grant. Roche: Grant Investigator, Research grant. Hologic: Grant Investigator, Research grant. Diasorin: Grant Investigator, Research grant. Accelerate: Grant Investigator, Research grant. Biofire: Grant Investigator, Research grant. D. Van Duin, achaogen: Scientific Advisor, Consulting fee. shionogi: Scientific Advisor, Consulting fee. Allergan: Scientific Advisor, Consulting fee. Astellas: Scientific Advisor, Consulting fee. Neumedicine: Scientific Advisor, Consulting fee. Roche: Scientific Advisor, Consulting fee. T2 Biosystems: Scientific Advisor, Consulting fee.


Sign in / Sign up

Export Citation Format

Share Document