Gas-Liquid Chromatographic Determination of Trace Amounts of Nitrite in Egg, Egg White, and Egg Yolk

1983 ◽  
Vol 66 (2) ◽  
pp. 260-263
Author(s):  
Akio Tanaka ◽  
Norihide Nose ◽  
Hiroyuki Masaki ◽  
Yoshinori Kikuchi ◽  
Hisao Iwasaki

Abstract A simple, sensitive, and practical method is described for determination of nitrite in egg, egg white, and egg yolk. Egg is deproteinized by adding a mixture of ammonium thiocyanate, mercuric chloride, and zinc acetate, and centrifuged. Nitrite in the supernate is converted to tetrazolophthalazine by reaction with hydralazine in acidic solution and then determined by gas-liquid chromatography with an electroncapture detector (GLC-ECD) and a column of OV-225 on Chromosorb W(HP). Nitrite concentrations from 5 to 50 ng/mL are calculated from peak height; the detection limit is 3 ng/mL extract. Recoveries from eggs, egg whites, and egg yolks ranged from 91.7 to 98.0%. The mean nitrite concentration in 50 egg samples was 0.04 ppm (0.01-0.11 ppm) with a detection limit of 4 ng nitrite/g.

1974 ◽  
Vol 57 (5) ◽  
pp. 1046-1049
Author(s):  
Richard H Larose

Abstract A method is described which permits the removal of interfering co-extractives from lindane, using high-speed liquid chromatography. Fractions are collected from the liquid chromatograph for further analysis by gas-liquid chromatography. The cleanup procedure takes less than 5 min and recoveries of more than 90% are obtained. The detection limit for water samples is 5 ng/L.


1975 ◽  
Vol 58 (4) ◽  
pp. 694-699
Author(s):  
Larry J Frahm ◽  
Glenn M George ◽  
J Patrick Mcdonnell

Abstract Nifursol (3,5-dinitrosalicylic acid (5-nitrofurfurylidene) hydrazide) is extracted into ethyl acetate from 10 g tissue in the presence of sodium sulfate. Tissue interferences are removed from the tissue extract by washing with petroleum ether after the extract has been transferred into an aqueous solution by evaporation of ethyl acetate. The drug is hydrolyzed under acid conditions to form 5-nitro-2-furaldehyde (5NF). After partition of 5NF from the aqueous phase into benzene the extract is further cleaned up on a Florisil column. The 5NF is eluted from the Florisil column with benzeneethyl acetate. Electron capture gas-liquid chromatography of a 10 μl injection of the concentrated column eluate is the determinative step. Quantitation is accomplished by comparison of the peak height of the sample to the peak height of the standard which is carried through the method simultaneously. Studies of method performance on turkey muscle, liver, kidney, and skin tissues fortified to contain 10 ppb nifursol show a recovery range of 87.4–95.0% and a coefficient of variation range of 5.7–11.2%.


1982 ◽  
Vol 60 (6) ◽  
pp. 638-650 ◽  
Author(s):  
J. J. Myher ◽  
A. Kuksis

A rapid and practical method has been developed for the gas–liquid chromatographic determination of the sn-1,2-diacylglycerol moieties of natural glycerophospholipids using polar wall-coated open tubular columns. The method gives complete resolution and quantitative estimates for all species according to molecular weight and degree of unsaturation, including stearoyl docosahexaenoylglycerol and related polyunsaturates. For this purpose the sn-1,2-diacylglycerols are obtained from the glycerophospholipids by hydrolysis with phospholipase C and are converted into the trimethylsilyl or tertiary-butyldimethylsilyl ethers. The silyl ethers are separated by gas–liquid chromatography on the capillary glass columns coated with a polar cyanopropylsiloxane polymer, in the temperature range 175–250 °C, using hydrogen as the carrier gas. Practical applications of the method are illustrated by analyses of the sn-1,2-diacylglycerol moieties of the phosphatidylcholines of soybean phosphatides, egg yolk, and rat liver. The method of analysis is applicable to other classes of glycerophospholipids and the total time requirements for the analysis of any one phospholipid class are comparable to those for a fatty acid analysis.


1987 ◽  
Vol 70 (6) ◽  
pp. 1031-1032
Author(s):  
Yuuko S Endoh ◽  
Ryozo Yamaoka ◽  
Nobuo Sasaki

Abstract A liquid chromatographic (LC) method is described for the quantitative determination of sulfamoyldapsone (2-sulfamoyl-4,4'-diaminodiphenyl sulfone) in swine muscle, liver, kidney, and fat. Sulfamoyldapsone was extracted from tissues with acetonitrile saturated with n-hexane. The extract was washed with n-hexane saturated with acetonitrile, concentrated, and cleaned up by alumina column chromatography. Sulfamoyldapsone was separated on an ODS column by using acetonitrile-methanol-water (6 + 18 + 76) and was detected at 292 nm. Overall average recovery of sulfamoyldapsone added to tissues at levels of 0.1 and 0.5 /μg/g was 93.3% ± 6.0. Detection limit was 0.02 μg/g in these tissues.


1980 ◽  
Vol 63 (1) ◽  
pp. 49-55
Author(s):  
Iwao Okuno ◽  
Dennis L Meeker

Abstract An analytical method is described for the determination of Compound 1080 (sodium fluoroacetate) residues in 1–10 g tissue. Sample extracts of tissues are cleaned up with silica gel, and Compound 1080 (as fluoroacetic acid) is separated by a micro-distillation procedure. The fluoroacetic acid in the distillate is derivatized with pentafluorobenzyl bromide to form pentafluorobenzyl fluoroacetate which is measured by electron capture gas-liquid chromatography. Recoveries of sodium fluoroacetate from fortified tissue samples averaged about 25%. Despite the limited recoveries, results were quite reproducible, and levels as low at 2 ppm were determined in fortified 1 g samples, and 0.2 ppm in 10 g samples. The method is relatively simple and has been used routinely in our laboratory for the analysis of various types of samples such as grain, and tissues from birds, rodents, and larger animals.


1979 ◽  
Vol 62 (1) ◽  
pp. 171-175 ◽  
Author(s):  
Alfred F Haeberer ◽  
Orestes T Chortyk

Abstract A method is presented for the determination of the plant growth regulator maleic hydrazide (MH; l,2-dihydro-3,6-pyridazinedione) in tobacco and tobacco smoke. Residues are converted to the bis(trimethylsilyl) derivative before analysis by gas-liquid chromatography. The method has been applied to cigarettes and condensed smoke and has been used to determine the per cent transfer of MH into cigarette smoke. Free MH residues could be determined directly on the tobacco samples, whereas total MH values were obtainable only after acid hydrolysis. In spite of large MH residues in tobacco, only 0.2% of the MH was transferred into smoke.


1985 ◽  
Vol 68 (4) ◽  
pp. 782-784
Author(s):  
Leonard P Valenti

Abstract A liquid chromatographic (LC) method is described for the determination of quinine, hydroquinine, sodium saccharin, and sodium benzoate in soft drinks. The method involves simple sample preparation, direct injection onto an octadecylsilane column, and elution with a methanol-acetonitrile-water-acetic acid (20 + 10 + 70 + 1) mobile phase. Eluted constituents are measured spectrophotometrically at 254 nm. The relationship between peak height and concentration was linear between 20 and 120 μg/mL for quinine. A relative standard deviation of 0.82% was obtained for commercial samples spiked with quinine, and the average recovery was 100.3%. The proposed procedure is accurate and rapid and can also detect hydroquinine (a natural contaminant of quinine), sodium saccharin, and sodium benzoate. Linear responses ranged from 0.45 to 20 (xg/mL for hydroquinine, from 54.8 to 219 μg/mL for sodium saccharin, and from 10.1 to 145.1 (ig/mL for sodium benzoate. The reproducibility of the LC method was evaluated with standard solutions of hydroquinine, sodium saccharin, and sodium benzoate, which produced relative standard deviations of 0.42, 0.46, and 1.13%, respectively. The average recoveries for sodium saccharin and sodium benzoate from spiked samples were 99.4 and 100.2%, respectively.


1983 ◽  
Vol 66 (1) ◽  
pp. 209-211
Author(s):  
Ricardo G Coelho ◽  
David L Nelson

Abstract A rapid method for extraction and quantitative determination of sorbic and benzoic acids in carbonated drinks and fruit juices is described. Acidified sample aliquots are transferred onto an Extrelut column. Acid preservatives are then eluted from the column with a mixture of ethyl ether-petroleum ether. Content of preservatives in the concentrated ethereal extract is readily determined by temperature-programmed gas-liquid chromatography without the need to prepare derivatives.


1980 ◽  
Vol 63 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Ross J Norstrom ◽  
Henry T Won ◽  
Micheline Van Hove Holdrinet ◽  
Patrick G Calway ◽  
Caroline D Naftel

Abstract Mirex and photomirex (8-monohydromirex) were separated from polychlorinated biphenyls (PCBs) and other aromatic compounds by nitration with fuming nitric acid-concentrated sulfuric acid and removal of nitro-PCBs on an alumina microcolumn; the compounds were then determined by gas-liquid chromatography. Recoveries of Mirex and photomirex were 102±8 and 104±5%, respectively, from standard solutions which had a PCB-to-Mirex and photomirex ratio of 1000. Recoveries from fortified, uncontaminated samples of sediment, fish, and eggs averaged 93±7 and 92±3% for Mirex and photomirex, respectively. The coefficients of variation for repeatability and reproducibility averaged 8 and 15%, respectively, in an interlaboratory study conducted by 4 laboratories using extracts of naturally contaminated substrates (sediment, carp, eel, and gull egg). Levels of Mirex in the samples ranged from 0.1 to 8 mg/kg, and levels of PCB ranged from 0.5 to 166 mg/kg.


1977 ◽  
Vol 60 (6) ◽  
pp. 1307-1309 ◽  
Author(s):  
Hendrik J Bakker

Abstract Total inorganic iodine in milk is determined by conversion to iodobutanone, which is quantitated by gas-liquid chromatography and electron capture detection. As little as 10 μg/L can be determined. The thyroid-active iodine content of milk can be determined rapidly with a relative standard deviation of 1.9%. Average recoveries for added iodide and iodine were 95.5 and 94.6%, respectively.


Sign in / Sign up

Export Citation Format

Share Document