scholarly journals Efficacy of Glutaraldehyde Disinfectant Against Cryptosporidium parvum in the Presence of Various Organic Soils

2003 ◽  
Vol 86 (1) ◽  
pp. 96-100 ◽  
Author(s):  
James Wilson ◽  
Aaron B Margolin

Abstract The opportunistic protozoan Cryptosporidium parvum is highly resistant to disinfectants, including those specifically used for processing reused medical equipment in hospitals. C. parvum oocysts were dried onto glass and steel grooved penicylinders and challenged with 2.5% glutaraldehyde solution in the presence of 3 types of soil with exposures at 10 min, 90 min, and 10 h. The influence of organic soils on disinfection was measured with 5% fetal bovine serum (FBS), 10% FBS, and 5 mg mucin/mL. An in vitro excystation procedure and cell culture infection assay were used to determine survivability of oocysts after the germicide challenge. In the presence of organic soil, all oocysts removed from carriers excysted and infected cell monolayers after all germicide contact times. However, excystation was observed only from oocysts that received no protection from organic soil after 10 h exposure. In these samples, no infection was observed in the cell monolayers. The results of this research demonstrate the importance of thorough cleaning of medical equipment before disinfection.

Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3667
Author(s):  
Yasuyuki Fujii ◽  
Yoshitomo Suhara ◽  
Yusuke Sukikara ◽  
Tomohiro Teshima ◽  
Yoshihisa Hirota ◽  
...  

Flavan-3-ols (FLs), specifically catechin and its oligomer B-type procyanidins, are suggested to potently bind to bovine serum albumin (BSA). We examined the interaction between BSA and FLs by fluorescence quenching and found the following order of binding activities to BSA: cinnamtannin A2 (A2; tetramer) > procyanidin C1 (C1; trimer) ≈ procyanidin B2 (B2, dimer) > (−)epicatechin (EC, monomer). Docking simulations between BSA and each compound at the binding site showed that the calculated binding energies were consistent with the results of our experimental assay. FLs exerted cytotoxicity at 1000 μg/mL in F11 cell culture with fetal bovine serum containing BSA. In culture containing serum-free medium, FLs exhibited significant cell proliferation at 10−4 μg/mL and cytotoxicity was observed at concentrations greater than 10 μg/mL. Results of this study suggest that interactions between polyphenols and BSA should be taken into account when evaluating procyanidin in an in vitro cell culture system.


2010 ◽  
Vol 24 (4) ◽  
pp. 1053-1063 ◽  
Author(s):  
J. van der Valk ◽  
D. Brunner ◽  
K. De Smet ◽  
Å. Fex Svenningsen ◽  
P. Honegger ◽  
...  

2006 ◽  
Vol 65 (2) ◽  
pp. 374-386 ◽  
Author(s):  
Misae Suzuki ◽  
Koji Misumi ◽  
Manabu Ozawa ◽  
Junko Noguchi ◽  
Hiroyuki Kaneko ◽  
...  

2011 ◽  
Vol 57 (4) ◽  
pp. 356-361
Author(s):  
Ikuo Nishigaki ◽  
Gowri Rangasamy Gunassekaran ◽  
Panjan Nagappan Venkatesan ◽  
Mandupal Chaco Sabu ◽  
Sabu Priya ◽  
...  

1998 ◽  
Vol 42 (8) ◽  
pp. 1959-1965 ◽  
Author(s):  
Cynthia M. Theodos ◽  
Jeffrey K. Griffiths ◽  
Jennifer D’Onfro ◽  
Alexandra Fairfield ◽  
Saul Tzipori

ABSTRACT Nitazoxanide (NTZ), a drug currently being tested in human clinical trials for efficacy against chronic cryptosporidiosis, was assessed in cell culture and in two animal models. The inhibitory activity of NTZ was compared with that of paromomycin (PRM), a drug that is partially effective against Cryptosporidium parvum. A concentration of 10 μg of NTZ/ml (32 μM) consistently reduced parasite growth in cell culture by more than 90% with little evidence of drug-associated cytotoxicity, in contrast to an 80% reduction produced by PRM at 2,000 μg/ml (3.2 mM). In contrast to its efficacy in vitro, NTZ at either 100 or 200 mg/kg of body weight/day for 10 days was ineffective at reducing the parasite burden in C. parvum-infected, anti-gamma-interferon-conditioned SCID mice. Combined treatment with NTZ and PRM was no more effective than treatment with PRM alone. Finally, NTZ was partially effective at reducing the parasite burden in a gnotobiotic piglet diarrhea model when given orally for 11 days at 250 mg/kg/day but not at 125 mg/kg/day. However, the higher dose of NTZ induced a drug-related diarrhea in piglets that might have influenced its therapeutic efficacy. As we have previously reported, PRM was effective at markedly reducing the parasite burden in piglets at a dosage of 500 mg/kg/day. Our results indicate that of all of the models tested, the piglet diarrhea model most closely mimics the partial response to NTZ treatment reported to occur in patients with chronic cryptosporidiosis.


2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


2021 ◽  
Author(s):  
Xenia Dolde ◽  
Christiaan Karreman ◽  
Marianne Wiechers ◽  
Stefan Schildknecht ◽  
Marcel Leist

Fetal bovine serum (FBS) is the only known stimulus for migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis assays to be incorporated in a test battery for reproductive and developmental toxicity. We confirmed here in an optimized transwell assay that FBS triggers directed migration along a concentration gradient. The responsible factor was found to be a protein in the 30-100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chemotactic for NCCs in animal models (e.g. VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined in a broad screening approach, whether human cells would produce any factor able to trigger NCC migration. We found that HepG2 hepatoma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease-sensitivity suggested a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.


Sign in / Sign up

Export Citation Format

Share Document