scholarly journals 72 Young Scholar Presentation: Use of medium chain fatty acids as mitigation or prevention strategies against pathogens in swine feed

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 59-60
Author(s):  
Annie B Lerner ◽  
Roger A Cochrane ◽  
Jordan T Gebhardt ◽  
Steve S Dritz ◽  
Cassandra K Jones ◽  
...  

Abstract Four experiments were conducted to evaluate: 1) medium chain fatty acids (MCFA) application to swine feed pre- or post-viral contamination with porcine epidemic diarrhea virus (PEDV) measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), 2) MCFA levels and combinations measured by qRT-PCR, and 3) selected MCFA in bioassay. In Exp. 1, treatments were a 2x2 + 1 factorial with the main effects of chemical treatment (0.3% commercial formaldehyde (CF), Sal CURB [Kemin Industries, Des Moines, IA] or 1% MCFA blend (Blend) of 1:1:1 C6:C8:C10 [PMI, Arden Hills, MN]) and timing of application pre- or post-inoculation with PEDV; plus a positive control (PC; feed inoculated with PEDV and no chemical treatment). All combinations of treatment and timing decreased detectable PEDV compared to PC (P< 0.05). Pre-inoculation had decreased PEDV detection compared to post-inoculation (P=0.009). Commercial formaldehyde decreased PEDV detection compared to MCFA (P< 0.001). In Exp. 2 and 3, pre-inoculation treatments consisted of: 1) PC, 2) 0.3% CF, and varying levels (0.125-0.66%) and combinations of MCFA (C5:0, C6:0, C8:0, or C10:0). In Exp. 2, treating feed with 0.33% C8:0 decreased (P< 0.05) PEDV detection compared to all levels of MCFA and PC. In Exp. 3, treating feed with CF, 0.5-1% Blend, all levels of C6:0+C8:0, 0.25% C6:0+C10:0, 0.33% C6:0+C10:0, 0.25% C8:0+C10:0, or 0.33% C8:0 + 0.33% C10:0 resulted in decreased PEDV detection compared to PC (P< 0.05). In Exp. 4, feed was treated pre-inoculation with either 1) no treatment (PC), 2) 0.3% CF, 3) 0.5% Blend, or 4) 0.3% C8:0 and analyzed via qRT-PCR and bioassay. Adding 0.5% Blend or 0.3% C8:0 resulted in decreased PEDV detection compared to PC. All chemical treatments resulted in no evidence of infectivity in the bioassay while the positive control did produce evidence of infectivity. In conclusion, lower levels of MCFA than previously evaluated may provide in-feed protection against PEDV.

2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Annie B Lerner ◽  
Roger A Cochrane ◽  
Jordan T Gebhardt ◽  
Steve S Dritz ◽  
Cassandra K Jones ◽  
...  

Abstract Feed has been shown to be a vector for viral transmission. Four experiments were conducted to: 1) determine if medium chain fatty acids (MCFA) are effective mitigants when applied to feed both pre- and post-porcine epidemic diarrhea virus (PEDV) inoculation measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), 2) evaluate varying levels and combinations of MCFA measured by qRT-PCR, and 3) evaluate selected treatments in bioassay to determine infectivity. In exp. 1, treatments were arranged in a 2 × 2 + 1 factorial with main effects of treatment (0.3% commercial formaldehyde [CF] product, Sal CURB [Kemin Industries, Inc.; Des Moines, IA], or 1% MCFA blend (Blend) of 1:1:1 C6:C8:C10 [PMI, Arden Hills, MN]) and timing of application (pre- or post-inoculation with PEDV) plus a positive control (PC; feed inoculated with PEDV and no treatment). All combinations of treatment and timing decreased detectable PEDV compared with the PC (P < 0.05). Pre-inoculation treatment elicited decreased magnitude of PEDV detection (cycle threshold value) compared with post-inoculation (P = 0.009). Magnitude of PEDV detection was decreased for CF compared with Blend (P < 0.0001). In exp. 2, pre-inoculation treatments consisted of: 1) PC, 2) 0.3% CF, 3 to 5) 0.125% to 0.33% C6:0, 6 to 8) 0.125% to 0.33% C8:0, 9 to 11) 0.125% to 0.33% C10:0, and 12 to 15) 0.125% to 0.66% C5:0. Treating feed with 0.33% C8:0 resulted in decreased (P < 0.05) PEDV detection compared with all other treatments. Increasing concentration of each individual MCFA decreased PEDV detectability (P < 0.042). In exp. 3, pre-inoculation treatments consisted of: 1) PC, 2) 0.3% CF, 3 to 7) 0.25% to 1% Blend, 8 to 10) 0.125% to 0.33% C6:0 + C8:0, 11 to 13) 0.125% to 0.33% C6:0 + C10:0, and 14 to 16) 0.125% to 0.33% C8:0 + C10:0. Treating feed with CF, 0.5% Blend, 0.75% Blend, 1% Blend, all levels of C6:0+C8:0, 0.25% C6:0 + 0.25% C10:0, 0.33% C6:0 + 0.33% C10:0, 0.25% C8:0 + 0.25% C10:0, or 0.33% C8:0 + 0.33% C10:0 elicited decreased detection of PEDV compared with PC (P < 0.05). Increasing concentration of each MCFA combination decreased PEDV detectability (linear, P < 0.012). In exp. 4, feed was treated pre-inoculation with: 1) no treatment (PC), 2) 0.3% CF, 3) 0.5% Blend, or 4) 0.3% C8:0 and analyzed via qRT-PCR and bioassay. Adding 0.5% Blend or 0.3% C8:0 resulted in decreased PEDV compared with PC and only PC resulted in a positive bioassay. Therefore, MCFA can decrease detection of PEDV in feed. Further, inclusion of lower levels of MCFA than previously evaluated are effective against PEDV.


2019 ◽  
Vol 4 (2) ◽  
pp. 1051-1059 ◽  
Author(s):  
Roger A Cochrane ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
Charles R Stark ◽  
Marut Saensukjaroenphon ◽  
...  

Abstract: The overall objective of this study was to compare the efficacy of medium-chain fatty acids (MCFA) to other common fat sources to minimize the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination in a pig bioassay. Treatments were feed with mitigants inoculated with PEDV after application and were: 1) positive control with no chemical treatment; 2) 0.325% commercially available formaldehyde-based product; 3) 1% blend of 1:1:1 caproic (C6), caprylic (C8), and capric acids (C10) and applied with an aerosolizing nozzle; 4) treatment 3 applied directly into the mixer without an aerosolizing nozzle; 5) 0.66% caproic acid; 6) 0.66% caprylic acid; 7) 0.66% capric acid; 8) 0.66% lauric acid; 9) 1% blend of 1:1 capric and lauric acids; 10) 0.3% commercially available dry C12 product; 11) 1% canola oil; 12) 1% choice white grease; 13) 2% coconut oil; 14) 1% coconut oil; 15) 2% palm kernel oil; 16) 1% palm kernel oil; 17) 1% soy oil and four analysis days (0, 1, 3, and 7 post inoculation) as well as 1 treatment of PEDV-negative feed without chemical treatment. There was a treatment × day interaction (P < 0.002) for detectable PEDV RNA. The magnitude of the increase in Ct value from d 0 to 7 was dependent upon the individual treatments. Feed treated with individual MCFA, 1% MCFA blend, or commercial-based formaldehyde had fewer (P < 0.05) detectable viral particles than all other treatments. Commercial-based formaldehyde, 1% MCFA, 0.66% caproic, 0.66% caprylic, and 0.66% capric acids had no evidence of infectivity 10-d old pig bioassay, while there was no evidence the C12 commercial product or longer chain fat sources inhibited PEDV infectivity. Interestingly, pigs given the coconut oil source with the highest composition of caprylic and capric only showed signs of infectivity on the last day of bioassay. These data suggest some MCFA have potential for reducing post feed manufacture PEDV contamination.


2020 ◽  
Vol 51 (2) ◽  
pp. 58-64
Author(s):  
L. Malá ◽  
K. Laloučková ◽  
P. Hovorková ◽  
E. Skřivanová

AbstractMedium-chain fatty acids (MCFAs) and their monoesters were tested for their antibacterial activity against the Gram-negative pathogen Aeromonas hydrophila. The antimicrobial effect was evaluated at two temperatures (4 °C and 37 °C) using a standardized microdilution method in a 96-well microtitration plate. The minimum inhibitory concentrations of selected MCFAs were determined as the lowest concentration limiting the growth of A. hydrophila in wells compared to a positive control of ≥ 80%. The results indicated that the most effective compound against A. hydrophila was sucrose monocaprate after incubation at 37 °C (0.625 mg ml−1), whereas monocaprylin was the most effective compound after incubation at 4 °C (1.25 mg ml−1). Free MCFAs showed no antibacterial effects towards this bacterium. Low solubility and sensory properties could limit the use of fatty acids in aquatic environment, which should be the subject of further studies.


2017 ◽  
Vol 14 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Angelica A. Ochoa-Flores ◽  
Josafat A. Hernández-Becerra ◽  
Adriana Cavazos-Garduño ◽  
Ida Soto-Rodríguez ◽  
Maria Guadalupe Sanchez-Otero ◽  
...  

Author(s):  
Huan Liu ◽  
Jingwei Huang ◽  
Hui Liu ◽  
Feng Li ◽  
Quansheng Peng ◽  
...  

Abstract Background The ketogenic diet (KD) can promote the anti-inflammatory metabolic state and increase ketone body level in rats. This study was to explore the effects and differences of KD with or without medium-chain fatty acids (MCFAs) on serum inflammatory factors and mTOR pathway in Sprague–Dawley (SD) rats. Results Male SD rats were assigned to five groups: control diet (C), 20% caloric restriction diet (LC), 20% caloric restriction ketogenic diet (containing MCFAs) (LCKD1), 20% caloric restriction ketogenic diet (LCKD2) and 20% caloric restriction foreign ketogenic diet (LCKD3), and fed for 30 d. LC and KD could significantly reduce the body weight of rats; LC and KD containing MCFAs showed anti-inflammatory effects; KD without MCFAs decreased the concentration of mTOR1, while KD containing MCFAs decreased the expression of AMPK, mtor1 and P70sk. Conclusions KD containing MCFAs showed better effects on the mTOR pathway and anti-inflammation than that without MCFAs.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P < 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


Sign in / Sign up

Export Citation Format

Share Document