scholarly journals 178 Towards better usage of data in dairy farms: The Dairy Brain initiative

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 133-134
Author(s):  
Liliana Fadul ◽  
Steven Wangen ◽  
Victor E Cabrera

Abstract With increasing use of new technologies in dairy farms, vast amounts of data are generated. Each data stream has its own frequency, diversity, type and quantity of data. While data diversity is beneficial to the farmer, it also makes more difficult data integration of different data streams. Even though different data streams are poorly linked to each other, there is an opportunity to add value to the farm management and decision-making processes by standardizing and integrating the different data sources available at the farm. Therefore, it is imperative to develop a system that can collect, integrate, manage, and analyze on- and off-farm data in real-time for practical and relevant actions: The Dairy Brain project. This is a trans-disciplinary research and extension project that engages multi-disciplinary scientists, dairy farmers, and industry professionals. We are using the state-of-the-art database management system from the University of Wisconsin-Madison Center for High Throughput Computing to develop our Agricultural Data Hub (AgDH) that connects and analyzes cow and herd data on a permanent basis. This involves cleaning and normalizing the data as well as allowing data retrieval on demand.The Dairy Brain, a suite of predictive and prescriptive analytics modules that leverages the AgDH to provide insight to the management of dairy operations and serve as an exemplar of an ecosystem of connected services. Therefore, decision support tools are developed to add value to the data and improve farm management at different levels.

1986 ◽  
Vol 15 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Jonas B. Kauffman ◽  
Loren W. Tauer

First-degree and second-degree stochastic dominance were used to separate a panel of 112 dairy farms with ten annual observations per farm into successful and less successful groups using four different performance measures. Logit regression using 16 independent variables was then used to determine important farm characteristics leading to farm success. High milk production and controlling hired labor and purchased feed expenses were important. The selective adoption of new technologies was also important. Optimal debt-asset ratios varied over the 10-year period.


Author(s):  
Hans Ris

The High Voltage Electron Microscope Laboratory at the University of Wisconsin has been in operation a little over one year. I would like to give a progress report about our experience with this new technique. The achievement of good resolution with thick specimens has been mainly exploited so far. A cold stage which will allow us to look at frozen specimens and a hydration stage are now being installed in our microscope. This will soon make it possible to study undehydrated specimens, a particularly exciting application of the high voltage microscope.Some of the problems studied at the Madison facility are: Structure of kinetoplast and flagella in trypanosomes (J. Paulin, U. of Georgia); growth cones of nerve fibers (R. Hannah, U. of Georgia Medical School); spiny dendrites in cerebellum of mouse (Scott and Guillery, Anatomy, U. of Wis.); spindle of baker's yeast (Joan Peterson, Madison) spindle of Haemanthus (A. Bajer, U. of Oregon, Eugene) chromosome structure (Hans Ris, U. of Wisconsin, Madison). Dr. Paulin and Dr. Hanna are reporting their work separately at this meeting and I shall therefore not discuss it here.


Author(s):  
Patricia N. Hackney

Ustilago hordei and Ustilago violacea are yeast-like basidiomycete pathogens ofHordeum vulgare and Silene alba respectively. The mating type system in both species of Ustilago is bipolar, with alleles, A,a, (U.hordei) and a1, a2 (U.violacea) at a single locus. Haploid sporidia maintain the asexual phase by budding, while the sexual phase is initiated by conjugation tube formation between the mating types during budding and conjugation.For observation of budding, sporidia were prepared by culturing the four types on YEG (yeast extract glucose) broth for 24 hours. After centrifugation at 5000g cells were either left unmated or mated in a1/a2,A/a combinations. The sporidia were then mixed 1:1 with 4% agar and the resulting 1mm cubes fixed in 8% gluteraldehyde and post fixed in osmium tetroxide. After dehydration and embedding cubes were thin sectioned with a LKB ultratome and photographed in a Zeiss 9s transmission electron microscope or in an AE1 electron microscope of MK11 1MEV at the High Voltage Electron Microscopy Center of the University of Wisconsin-Madison.


1995 ◽  
Vol 34 (03) ◽  
pp. 289-296 ◽  
Author(s):  
B. H. Sielaff ◽  
D. P. Connelly ◽  
K. E. Willard

Abstract:The development of an innovative clinical decision-support project such as the University of Minnesota’s Clinical Workstation initiative mandates the use of modern client-server network architectures. Preexisting conventional laboratory information systems (LIS) cannot be quickly replaced with client-server equivalents because of the cost and relative unavailability of such systems. Thus, embedding strategies that effectively integrate legacy information systems are needed. Our strategy led to the adoption of a multi-layered connection architecture that provides a data feed from our existing LIS to a new network-based relational database management system. By careful design, we maximize the use of open standards in our layered connection structure to provide data, requisition, or event messaging in several formats. Each layer is optimized to provide needed services to existing hospital clients and is well positioned to support future hospital network clients.


Author(s):  
Alena Vsevolodovna Gavrilova ◽  
Liubov Leonidovna Kniazeva ◽  
Vadim Viacheslavovich Koykov ◽  
Oleg Pavlovich Fyodorov

Author(s):  
James Marlatt

ABSTRACT Many people may not be aware of the extent of Kurt Kyser's collaboration with mineral exploration companies through applied research and the development of innovative exploration technologies, starting at the University of Saskatchewan and continuing through the Queen's Facility for Isotope Research. Applied collaborative, geoscientific, industry-academia research and development programs can yield technological innovations that can improve the mineral exploration discovery rates of economic mineral deposits. Alliances between exploration geoscientists and geoscientific researchers can benefit both parties, contributing to the pure and applied geoscientific knowledge base and the development of innovations in mineral exploration technology. Through a collaboration that spanned over three decades, we gained insight into the potential for economic uranium deposits around the world in Canada, Australia, USA, Finland, Russia, Gabon, Namibia, Botswana, South Africa, and Guyana. Kurt, his research team, postdoctoral fellows, and students developed technological innovations related to holistic basin analysis for economic mineral potential, isotopes in mineral exploration, and biogeochemical exploration, among others. In this paper, the business of mineral exploration is briefly described, and some examples of industry-academic collaboration innovations brought forward through Kurt's research are identified. Kurt was a masterful and capable knowledge broker, which is a key criterion for bringing new technologies to application—a grand, curious, credible, patient, and attentive communicator—whether talking about science, business, or life and with first ministers, senior technocrats, peers, board members, first nation peoples, exploration geologists, investors, students, citizens, or friends.


Sign in / Sign up

Export Citation Format

Share Document