scholarly journals Genetic relationships of antibody response, viremia level, and weight gain in pigs experimentally infected with porcine reproductive and respiratory syndrome virus1

2018 ◽  
Vol 96 (9) ◽  
pp. 3565-3581 ◽  
Author(s):  
Andrew S Hess ◽  
Ben R Trible ◽  
Melanie K Hess ◽  
Raymond R Rowland ◽  
Joan K Lunney ◽  
...  
2005 ◽  
Vol 81 (1) ◽  
pp. 11-21 ◽  
Author(s):  
N. R. Lambe ◽  
S. Brotherstone ◽  
M. J. Young ◽  
J. Conington ◽  
G. Simm

AbstractScottish Blackface ewes (no. = 308) were scanned four times per year using X-ray computed tomography (CT scanning) (pre-mating, pre-lambing, mid lactation and weaning), from 18 months to 5 years of age, giving a maximum of 16 scanning events per ewe. Total weights of carcass fat, internal fat and carcass muscle were estimated from the CT images at each scanning event. Lambs produced by these ewes were weighed at birth, mid lactation and weaning to calculate litter growth traits: litter birth weight; litter weight gain from birth until mid lactation; and litter weight gain from birth until weaning. Genetic (rg) and phenotypic (rp) correlations were estimated between ewe CT tissue traits and litter growth traits. Correlations between ewe CT tissue traits and litter size (LS) were also estimated. Ewe CT tissue traits were either unadjusted or adjusted for total soft tissue weight (sum of weights of carcass fat, internal fat and carcass muscle) to investigate relationships with either absolute tissue weights of carcass fat (CFWT), internal fat (IFWT), and carcass muscle (CMWT), or relative proportions of carcass fat (CFP), internal fat (IFP), and carcass muscle (CMP). Litter growth traits were either unadjusted or adjusted for litter size, to investigate relationships with total lamb burden (total litter birth weight (TBW), total litter weight gain from birth until mid lactation (TWGM), total litter weight gain from birth until weaning (TWGW)) or average lamb performance (average lamb birth weight (ABW), average lamb weight gain from birth until mid lactation (AWGM), average lamb weight gain from birth until weaning (AWGW)).Moderate to large positive genetic correlations were estimated between absolute weights of all three ewe tissues (CFWT, IFWT, CMWT), or muscle proportion (CMP), and litter size (LS). Significant positive genetic correlations were also estimated between weight (CMWT) or proportion (CMP) of muscle carried by the ewe pre-mating and total birth weight (TBW) and weight gains (TWGM, TWGW) of her litter, largely due to the associated increase in litter size. Muscle proportion (CMP) was not significantly correlated to average lamb weights or weight gains (ABW, AWGM, AWGW). Pre-lambing carcass fat weight (CFWT) and proportion (CFP) in the ewe showed positive genetic correlations with average lamb weights and weight gains (ABW, AWGM, AWGW), whereas, after lambing, CFP was negatively correlated with these lamb traits. Internal fat weight (IFWT) pre-mating showed positive genetic correlations with all litter growth traits (TBW, TWGM, TWGW, ABW, AWGM, AWGW). Average lamb growth traits were negatively correlated with pre-lambing internal fat proportion (IFP), but positively correlated to IFP at mid lactation and weaning.Correlations were also estimated between each pair of CT traits. Total internal fat weight and total carcass fat weight were very highly correlated (rp= 0·75,rg= 0·96). Correlations with total carcass muscle weight were smaller and positive for both carcass fat weight (rp= 0·48,rg= 0·12) and internal fat weight (rp= 0·42,rg= 0·20).The results suggest that selection for increased carcass muscle weight or proportion in a Scottish Blackface hill flock would have a positive effect on total weights of litters reared, but that selection against carcass fat weight or proportion in a breeding programme for Blackface sheep may have an impact on the maternal ability of the ewe. However, maintaining fat in internal depots may reduce the depletion of carcass fat during pregnancy, allowing this depot to provide energy for lactation, and may have a positive impact on lamb growth.


2001 ◽  
Vol 75 (15) ◽  
pp. 6953-6961 ◽  
Author(s):  
Donald N. Forthal ◽  
Gary Landucci ◽  
Eric S. Daar

ABSTRACT The partial control of viremia during acute human immunodeficiency virus type 1 (HIV-1) infection is accompanied by an HIV-1-specific cytotoxic T-lymphocyte (CTL) response and an absent or infrequent neutralizing antibody response. The control of HIV-1 viremia has thus been attributed primarily, if not exclusively, to CTL activity. In this study, the role of antibody in controlling viremia was investigated by measuring the ability of plasma or immunoglobulin G from acutely infected patients to inhibit primary strains of HIV-1 in the presence of natural-killer (NK) effector cells. Antibody that inhibits virus when combined with effector cells was present in the majority of patients within days or weeks after onset of symptoms of acute infection. Furthermore, the magnitude of this effector cell-mediated antiviral antibody response was inversely associated with plasma viremia level, and both autologous and heterologous HIV-1 strains were inhibited. Finally, antibody from acutely infected patients likely reduced HIV-1 yield in vitro both by mediating effector cell lysis of target cells expressing HIV-1 glycoproteins and by augmenting the release of β-chemokines from NK cells. HIV-1-specific antibody may be an important contributor to the early control of HIV viremia.


Author(s):  
Leticia P Sanglard ◽  
Felipe M W Hickmann ◽  
Yijian Huang ◽  
Kent A Gray ◽  
Daniel C L Linhares ◽  
...  

Abstract Antibody response, measured as sample-to-positive (S/P) ratio, to Porcine Reproductive and Respiratory Syndrome virus (PRRSV) following a PRRSV-outbreak (S/POutbreak) in a purebred nucleus and following a PRRSV-vaccination (S/PVx) in commercial crossbred herds have been proposed as genetic indicator traits for improved reproductive performance in PRRSV-infected purebred and PRRSV-vaccinated crossbred sows, respectively. In this study, we investigated the genetic relationships of S/POutbreak and S/PVx with performance at the commercial (vaccinated crossbred sows) and nucleus level (non-infected and PRRSV-infected purebred sows), respectively, and tested the effect of previously identified SNP for these indicator traits. Antibody response was measured on 541 Landrace sows approximately 54 days after the start of a PRRSV outbreak, and on 906 F1 (Landrace x Large White) gilts approximately 50 days after vaccination with a commercial PRRSV vaccine. Reproductive performance was recorded for 711 and 428 Landrace sows before and during the PRRSV outbreak, respectively, and for 811 vaccinated F1 animals. The estimate of the genetic correlation (rg) of S/POutbreak with S/PVx was 0.72±0.18. The estimates of rg of S/POutbreak with reproductive performance in vaccinated crossbred sows were low to moderate, ranging from 0.05±0.23 to 0.30±0.20. The estimate of rg of S/PVx with reproductive performance in non-infected purebred sows was moderate and favorable with number born alive (0.50±0.23) but low (0±0.23 to -0.11±0.23) with piglet mortality traits. The estimates of rg of S/PVx were moderate and negative (-0.38±0.21) with number of mummies in PRRSV-infected purebred sows and low with other traits (-0.30±0.18 to 0.05±0.18). Several significant associations (P0 > 0.90) of previously reported SNP for S/P ratio (ASGA0032063 and H3GA0020505) were identified for S/P ratio and performance in non-infected purebred and PRRSV-exposed purebred and crossbred sows. Genomic regions harboring the major histocompatibility complex class II region significantly contributed to the genetic correlation of antibody response to PRRSV with most of the traits analyzed. These results indicate that selection for antibody response in purebred sows following a PRRSV outbreak in the nucleus and for antibody response to PRRSV vaccination measured in commercial crossbred sows are expected to increase litter size in purebred and commercial sows.


2008 ◽  
Vol 42 (5) ◽  
pp. 30
Author(s):  
Kerri Wachter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document