scholarly journals Small intestinal transcriptome analysis revealed changes of genes involved in nutrition metabolism and immune responses in growth retardation piglets1

2019 ◽  
Vol 97 (9) ◽  
pp. 3795-3808 ◽  
Author(s):  
Ming Qi ◽  
Bie Tan ◽  
Jing Wang ◽  
Jianjun Li ◽  
Simeng Liao ◽  
...  

Abstract Postnatal growth retardation (PGR) is common in piglets. Abnormal development in small intestine was casually implicated in impaired growth, but the exact mechanism is still implausible. The present study unveiled transcriptome profile of jejunal mucosa, the major site of nutrient absorption, in PGR and healthy piglets using RNA-sequencing (RNA-seq). The middle segments of jejunum and ileum, and jejunal mucosa were obtained from healthy and PGR piglets at 42 d of age. Total RNA samples extracted from jejunal mucosa of healthy and PGR piglets were submitted for RNA-seq. Lower villus height was observed in both jejunum and ileum from PGR piglets suggesting structural impairment in small intestine (P < 0.05). RNA-seq libraries were constructed and sequenced, and produced average 4.8 × 107 clean reads. Analysis revealed a total of 499 differently expressed genes (DEGs), of which 320 DEGs were downregulated in PGR piglets as compared to healthy piglets. The functional annotation based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) highlighted that most DEGs were involved in nutrient metabolism and immune responses. Our results further indicated decreased gene expression associated with glucose, lipid, protein, mineral, and vitamin metabolic process, detoxication ability, oxidoreductase activity, and mucosal barrier function; as well as the increased insulin resistance and inflammatory response in the jejunal mucosa of PGR piglets. These results characterized the transcriptomic profile of the jejunal mucosa in PGR piglets, and could provide valuable information with respect to better understanding the nutrition metabolism and immune responses in the small intestine of piglets.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 78-78
Author(s):  
Ming Qi ◽  
B I E Tan ◽  
Yulong Yin ◽  
Simeng Liao ◽  
Jianjun Li ◽  
...  

Abstract The piglets with postnatal growth retardation (PGR) have high mortality and morbidity during their growth and development. Abnormal development of small intestine is casually implicated in impaired growth, but the exact mechanism still remains poorly understood. Thus, the present study investigated the immune profiles related to intestinal mucosal barrier in PGR and healthy piglets. The plasma sample, middle segments of small intestine, and the intestinal mucosa were obtained from healthy and PGR piglets at 42d of age. Compared to healthy piglets, higher plasma concentrations of diamine oxidase and D-lactate were observed in PGR piglets (P &lt; 0.05). Decreased villous height, ratio of villous height to crypt depth, as well as sparse villi, jagged microvilli were also found in jejunum and ileum of PGR piglets. PGR also decreased the percentage of proliferating cell nuclear antigen (PCNA)-positive cells, as well as abundance of Zonula occludens-1, Occludin, Claudin-1, and E-cadherin mRNA and protein in jejunal and ileal mucosa (P &lt; 0.05). The lower concentration of sIgA in jejunal mucosa, and lysozyme in both jejunal and ileal mucosa, but higher level of β-defensins in the ileal mucosa were observed in PGR piglets as compared to healthy piglets (P &lt; 0.05). The percentage of CD68-positive cells were significantly increased, but the levels of P-glycoprotein were decreased in jejunum and ileum from PGR piglets (P &lt; 0.01). Moreover, the expression of proteins involved in p38 MAPK/NF-kB pathway was significantly upregulated in jejunal and ileal mucosa from PGR piglets (P &lt; 0.05). Collectively, these results indicated that the PGR piglets exhibited impaired intestinal integrity, and decreased capacity of mucosal immune function, which may result in severe inflammatory response via the activation of p38 MAPK/NF-kB pathway. Our findings may have important implications in the prevention and treatment of the intestinal mucosal barrier dysfunction in piglets.


1978 ◽  
Vol 56 (4) ◽  
pp. 617-623 ◽  
Author(s):  
Darlene G. Kelly ◽  
Charles F. Code

The study was designed to determine whether the special Na+–H+ barrier function or the gastric mucosa is present in the mucosa of the small bowel and whether a gastric mucosal barrier breaker (hexanoic acid) would accelerate the fluxes of sodium in duodenum–jejunum and ileum as in the stomach. The observations were made in healthy conscious dogs with Thiry-Vella fistulae of the small bowel or Heidenhain pouches of the gastric corpus. These barrier characteristics of the stomach were completely absent in the small intestine where bidirectional Na fluxes were 5–10 times greater than in the stomach and were not accelerated by hexanoic acid as they were in the stomach.A comparison was made between the rates of absorption of hexanoic acid, sodium hexanoate, and HCl from the pouches and fistulae. The lipid-soluble fatty acid was transported at all sites more rapidly than its water-soluble sodium salt. In the stomach and ileum the H+ of HCl and sodium hexanoate were absorbed at similar slow rates. The duodenal–jejunal mucosa, however, transported H+ at rates nearly identical to those of hexanoic acid. In our tests HCl was not neutralized in duodenal contents while large quantities were neutralized in the contents of ileum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuting Liu ◽  
Wentao Lyu ◽  
Lei Liu ◽  
Kaikai Lv ◽  
Fen Zheng ◽  
...  

Digestive enzyme activity is involved in the regulation of growth performance because digestive enzymes function to improve the feed efficiency by digestion and in turn to modulate the process of nutrient metabolism. The objective of this study was to investigate the differences of the digestive enzyme activities and expression of nutrient transporters in the intestinal tract between Jinhua and Landrace pigs and to explore the potential breed-specificity in digestion and absorption. The pancreas segments and the digesta and mucosa of the duodenum, jejunum, and ileum were collected from 10 Jinhua pigs and Landrace pigs, respectively. The activities of trypsin, chymotrypsin, amylase, maltase, sucrase, and lipase were measured and the expression levels of PepT1, GLUT2, SGLT1, FABP1, FABP2, and FABP4 were examined. Results showed that the trypsin activity in the pancreas of Jinhua pigs was higher than that in Landrace pigs, but was lower in the small intestine, except for in the jejunal mucosa. The chymotrypsin activity in the small intestine of Jinhua pigs was higher than that in Landrace pigs, except for in jejunal mucosa and contents. Compared with Landrace pigs, the amylase and maltase activity in the small intestine of Jinhua pigs was lower, except for in ileal mucosa. The sucrase activity in the small intestine of Jinhua pigs was also lower than Landrace pigs, except for in jejunal mucosa. Furthermore, the lipase activity in the small intestine of Jinhua pigs was higher than that in Landrace pigs. The mRNA levels of PepT1 and GLUT2 in duodenal, jejunal and ileal mucosa showed no difference between Jinhua and Landrace pigs, whereas SGLT1 in ileal mucosa was lower in Jinhua pigs. The mRNA levels of FABP1, FABP2 and FABP4 in the small intestinal mucosa of Jinhua pigs were higher than in Landrace pigs. These findings indicate that there is a certain difference in the digestibility and absorption of nutrients in small intestine of Jinhua and Landrace pigs, partially resulting in their differences in growth development and fat deposition.


2014 ◽  
Vol 92 (8) ◽  
pp. 3398-3406 ◽  
Author(s):  
V. Huygelen ◽  
M. De Vos ◽  
S. Willemen ◽  
E. Fransen ◽  
C. Casteleyn ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 602
Author(s):  
Junqiu Luo ◽  
Daiwen Chen ◽  
Xiangbing Mao ◽  
Jun He ◽  
Bing Yu ◽  
...  

This study investigated β-glucan derived from Agrobacterium sp. ZX09 with high (2000 kDa) and low (300 kDa) molecular weight (MW) to compare their effects on growth performance and gut function in LPS-induced weaned piglets. Changes in jejunal morphology, mucosal barrier function, microbial populations, and fermentation in the piglets were determined. Data showed that β-glucan prevented body weight loss in LPS challenged piglets. Supplementation with both β-glucan fractions improved jejunal morphology. Compared to low MW, β-glucan of high MW generally up-regulated transcripts of ZO-1, MUC1, and MUC2 in jejunal mucosa to a lesser extent. Mucosal D-lactate, diamine oxidase, and anti-oxidation index were effectively resumed in β-glucan treatment. Both β-glucan diets provoked the emergence of a balanced microbiota and a richer concentration of volatile fatty acids in the colon. The richest community of bifidobacterium and concentration of butyrate emerged after feeding β-glucan with high MW. Results suggested that the effect of Agrobacterium sp. ZX09 β-glucans on the gut-modulatory function is largely linked to their MW. Low MW β-glucan mainly improved the mucosal barrier function in the jejunum, while high MW β-glucan had profound effects on the microbial community and fermentation in the hindgut of piglets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiyun Wang ◽  
Chengcheng Li ◽  
Meng Peng ◽  
Lei Wang ◽  
Di Zhao ◽  
...  

Abstractβ-Conglycinin (β-CG), an anti-nutritional factor, is a major allergen in soybeans to induce intestinal dysfunction and diarrhea in neonatal animals, including piglets and human infants. This study with a piglet model determined the effects of N-acetylcysteine (NAC) on intestinal function and autophagy in response to β-CG challenge. Twenty-four 12-day-old piglets (3.44 ± 0.28 kg), which had been weaned at 7 days of age and adapted for 5 days after weaning, were randomly allocated to the control, β-CG, and β-CG + NAC groups. Piglets in the control group were fed a liquid diet containing 10% casein, whereas those in the β-CG and β-CG + NAC groups were fed the basal liquid diets containing 9.5% casein and 0.5% β-CG for 2 days. Thereafter, pigs in the β-CG + NAC group were orally administrated with 50 mg (kg BW)−1 NAC for 3 days, while pigs in the other two groups were orally administrated with the same volume of sterile saline. NAC numerically reduced diarrhea incidence (− 46.2%) and the concentrations of hydrogen peroxide and malondialdehyde, but increased claudin-1 and intestinal fatty-acid binding protein (iFABP) protein abundances and activities of catalase and glutathione peroxidase in the jejunum of β-CG-challenged piglets. Although β-CG challenge decreased the villus height, villus height/crypt depth ratio, and mRNA levels of claudin-1 and occludin, no significant differences were observed in these indices between the control and β-CG + NAC groups, suggesting the positive effects of NAC supplementation on intestinal mucosal barrier function. Moreover, NAC increased the concentrations of citrulline and D-xylose in the plasma, as well as the expression of genes for aquaporin (AQP) 3, AQP4, peptide transporter 1 (PepT1), sodium/glucose co-transporter-1 (SGLT-1), potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13), and solute carrier family 1 member 1 (SLC1A1) in the jejunum, demonstrating that NAC augmented intestinal metabolic activity and absorptive function. Remarkably, NAC decreased Atg5 protein abundance and the LC3II/LC3I ratio (an indicator of autophagy) in the jejunum of β-CG-challenged piglets. Taken together, NAC supplementation improved intestinal function and attenuated intestinal autophagy in β-CG-challenged piglets.


Sign in / Sign up

Export Citation Format

Share Document