scholarly journals N-Acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiyun Wang ◽  
Chengcheng Li ◽  
Meng Peng ◽  
Lei Wang ◽  
Di Zhao ◽  
...  

Abstractβ-Conglycinin (β-CG), an anti-nutritional factor, is a major allergen in soybeans to induce intestinal dysfunction and diarrhea in neonatal animals, including piglets and human infants. This study with a piglet model determined the effects of N-acetylcysteine (NAC) on intestinal function and autophagy in response to β-CG challenge. Twenty-four 12-day-old piglets (3.44 ± 0.28 kg), which had been weaned at 7 days of age and adapted for 5 days after weaning, were randomly allocated to the control, β-CG, and β-CG + NAC groups. Piglets in the control group were fed a liquid diet containing 10% casein, whereas those in the β-CG and β-CG + NAC groups were fed the basal liquid diets containing 9.5% casein and 0.5% β-CG for 2 days. Thereafter, pigs in the β-CG + NAC group were orally administrated with 50 mg (kg BW)−1 NAC for 3 days, while pigs in the other two groups were orally administrated with the same volume of sterile saline. NAC numerically reduced diarrhea incidence (− 46.2%) and the concentrations of hydrogen peroxide and malondialdehyde, but increased claudin-1 and intestinal fatty-acid binding protein (iFABP) protein abundances and activities of catalase and glutathione peroxidase in the jejunum of β-CG-challenged piglets. Although β-CG challenge decreased the villus height, villus height/crypt depth ratio, and mRNA levels of claudin-1 and occludin, no significant differences were observed in these indices between the control and β-CG + NAC groups, suggesting the positive effects of NAC supplementation on intestinal mucosal barrier function. Moreover, NAC increased the concentrations of citrulline and D-xylose in the plasma, as well as the expression of genes for aquaporin (AQP) 3, AQP4, peptide transporter 1 (PepT1), sodium/glucose co-transporter-1 (SGLT-1), potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13), and solute carrier family 1 member 1 (SLC1A1) in the jejunum, demonstrating that NAC augmented intestinal metabolic activity and absorptive function. Remarkably, NAC decreased Atg5 protein abundance and the LC3II/LC3I ratio (an indicator of autophagy) in the jejunum of β-CG-challenged piglets. Taken together, NAC supplementation improved intestinal function and attenuated intestinal autophagy in β-CG-challenged piglets.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 302-303
Author(s):  
Tao Wu

Abstract Trihexanoin is a short-chain triglyceride (SCT). Many studies have reported that SCTs play important roles in the maintenance of intestinal epithelial structure and function. The present work was to investigate the effects of trihexanoin on growth performance, carbohydrate and fat metabolism, as well as intestinal morphology and function in weaned piglets. Twenty weaned piglets (21 ± 2 d) were randomly allocated to one of two treatment groups: the control group (basal diet supplemented with 0.5% soya oil); the TH group (basal diet supplemented with 0.5% trihexanoin). Dietary trihexanoin supplementation significantly reduced diarrhea rate (P < 0.05); increased the concentrations of LDL, HDL and total protein, decreased cholesterol concentrations (CHOL) and glutamyl transpeptidase (GGT) activity in plasma (P < 0.05); increased villus height, surface area, and the ratio of villus height to crypt depth (P < 0.05); altered the mRNA levels and abundances of proteins related to glycogen and fat metabolism (gene LIPE, LPL, PPARG, ACACA, FASN, SLC27A2, INSR, PCK1 and ASS1), mucosal barrier function (protein claudin-1, and occludin), antioxidant capacity (protein HSP70 and gene Nrf2, NOX2 and GSTO2) and water transport capacity (protein AQP3 and gene AQP8 and AQP10) (P < 0.05); altered the gene abundance of intestinal bacteria (Enterobacteriaceae, Enterococcus, Clostridium, Lactobacillus and Bifidobacterium) (P < 0.05). In conclusion, dietary supplementation of trihexanoin improved the intestinal function and health of weaned piglets by regulating nutrient metabolism, improving intestinal function of mucosal barrier, transport, absorption and antioxidant, and altering the community of microbiota.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Chunchun Wang ◽  
Shuting Cao ◽  
Zhuojun Shen ◽  
Qihua Hong ◽  
Jie Feng ◽  
...  

Abstract Background The objective of this experiment was to investigate the influence of dietary tributyrin on intestinal mucosa development, oxidative stress, mitochondrial function and AMPK-mTOR signaling pathway. Methods Seventy-two pigs were divided into two treatments and received either a basal diet or the same diet supplemented with 750 mg/kg tributyrin. Each treatment has six replicates of six pigs. After 14 days, 6 pigs from each treatment were selected and the jejunal samples were collected. Results Results showed that supplemental tributyrin increased (P < 0.05) villus height and villus height: crypt depth of weaned pigs. Pigs fed tributyrin had greater (P < 0.05) RNA/DNA and protein/DNA ratios than pigs on the control group. The mRNA levels of sodium glucose transport protein-1 and glucose transporter-2 in the jejunum were upregulated (P < 0.05) in pigs fed the tributyrin diet. Dietary tributyrin supplementation lowered (P < 0.05) the malondialdehyde and hydrogen peroxide (H2O2) content in jejunum, enhanced (P < 0.05) the mitochondrial function, as demonstrated by decreased (P < 0.05) reactive oxygen species level and increased (P < 0.05) mitochondrial membrane potential. Furthermore, tributyrin increased (P < 0.05) mitochondrial DNA content and the mRNA abundance of genes related to mitochondrial functions, including peroxisomal proliferator-activated receptor-γ coactivator-1α, mitochondrial transcription factor A, nuclear respiratory factor-1 in the jejunum. Supplementation with tributyrin elevated (P < 0.05) the phosphorylation level of AMPK and inhibited (P < 0.05) the phosphorylation level of mTOR in jejunum compared with the control group. Conclusions These findings suggest that dietary supplementation with tributyrin promotes intestinal mucosa growth, extenuates oxidative stress, improves mitochondrial function and modulates the AMPK-mTOR signal pathway of weaned pigs.


2018 ◽  
Vol 19 (10) ◽  
pp. 3277
Author(s):  
Tao Wu ◽  
Kang Li ◽  
Dan Yi ◽  
Lei Wang ◽  
Di Zhao ◽  
...  

Trihexanoin is a short-chain triglyceride (SCT). Many studies have reported that SCTs play important roles in the maintenance of intestinal epithelial structure and function. The present work was to investigate the effects of trihexanoin on growth performance, carbohydrate and fat metabolism, as well as intestinal morphology and function in weaned piglets. Twenty weaned piglets (21 ± 2 d) were randomly allocated to one of two treatment groups: The control group (basal diet supplemented with 0.5% soya oil); the TH group (basal diet supplemented with 0.5% trihexanoin). Dietary trihexanoin supplementation significantly reduced diarrhea rate; increased the concentrations of LDL, HDL and total protein in plasma; decreased cholesterol concentrations and glutamyl transpeptidase activity in plasma; improved intestinal morphologic structure; altered the mRNA levels and abundances of proteins related to glycogen and fat metabolism, mucosal barrier function, antioxidant capacity and water transport capacity; and altered the community of intestinal microflora. These results indicate that dietary trihexanoin supplementation could reduce diarrhea, regulate carbohydrate and fat metabolism, exert beneficial effects on the intestinal mucosal barrier, protect the intestinal mucosa from injuries, improve intestinal transport and absorption, and enhance antioxidant capacity. In conclusion, dietary supplementation with 0.5% trihexanoin improves the intestinal function and health of weaned piglets.


2018 ◽  
Vol 20 (1) ◽  
pp. 20 ◽  
Author(s):  
Haiwei Liang ◽  
Zhaolai Dai ◽  
Jiao Kou ◽  
Kaiji Sun ◽  
Jingqing Chen ◽  
...  

l-Tryptophan (Trp) is known to play an important role in the health of the large intestine. However, a role of dietary Trp in the small-intestinal mucosal barrier and microbiota remains poorly understood. The present study was conducted with weaned piglets to address this issue. Postweaning piglets were fed for 4 weeks a corn- and soybean meal-based diet supplemented with 0 (Control), 0.1, 0.2, or 0.4% Trp. The small-intestinal microbiota and serum amino acids were analyzed by bacterial 16S rRNA gene-based high-throughput sequencing methods and high-performance liquid chromatography, respectively. The mRNA levels for genes involved in host defense and the abundances of tight-junction proteins in jejunum and duodenum were measured by real time-PCR and Western blot techniques, respectively. The concentrations of Trp in the serum of Trp-supplemented piglets increased in a dose-dependent manner. Compared with the control group, dietary supplementation with 0.2–0.4% Trp reduced the abundances of Clostridium sensu stricto and Streptococcus in the jejunum, increased the abundances of Lactobacillus and Clostridium XI (two species of bacteria that can metabolize Trp) in the jejunum, and augmented the concentrations of secretory immunoglobulin A (sIgA) as well as mRNA levels for porcine β-defensins 2 and 3 in jejunal tissues. Moreover, dietary Trp supplementation activated the mammalian target of rapamycin signaling and increased the abundances of tight-junction proteins (zonula occludens (ZO)-1, ZO-3, and claudin-1) in jejunum and duodenum. We suggested that Trp-metabolizing bacteria in the small intestine of weaned pigs primarily mediated the beneficial effects of dietary Trp on its mucosal integrity, health, and function.


2021 ◽  
Author(s):  
Yongsen Zhao ◽  
Danping Wang ◽  
Meng Jiang ◽  
Jinglong Chen ◽  
Xiaojing Yang

Abstract Background: This study investigated the effects of piglets with dietary supplementation yeast fermentation product (YFP) on growth performance, immune status and intestinal inflammation after a Salmonella typhimurium challenge. Twenty-four weaned piglets were assigned to four treatments including: non-challenge control (Con); Salmonella typhimurium-challenged control (ST); ST + 0.2% YFP (0.2% YFP); and ST + 0.4% YFP (0.4% YFP). All piglets were challenged twice with Salmonella typhimurium. All of them were killed at 7th day after the second challenge to obtain plasma and intestine for analysis.Results: 0.4% YFP increased average daily gain (ADG) and duodenal villus height and villus height/ crypt depth (P < 0.05) and decreased feed-gain ratio (P < 0.05) after Salmonella typhimurium challenge compared with ST group. The 0.4% YFP decreased the elevating concentrations IL-1b and IL-6 (P < 0.01) induced by Salmonella typhimurium and increased the concentration of IL-10 (P < 0.05) in plasma compared with ST group. Furthermore, YFP influenced the apoptosis related mRNA levels of Bax, Bcl-2 and caspase 3 (P < 0.05) and increased intestinal occludin protein expression (P < 0.05). 0.4% YFP down-regulated the mRNA expressions of TLR4, MyD88, IRAK1, TRAF6 and NFkB (P < 0.05) and decreased the mRNA expression of IL-6, TNFa (P < 0.05) and increased the IL-10 (P < 0.01) in duodenum compared with ST group. In addition, 0.4% YFP decreased the phosphorylation levels of p38 MAPK and ERK1/2 (P < 0.01).Conclusions: Dietary 0.4% yeast fermentation product supplementation had positive effects on growth performance and intestinal barrier function and reduced intestinal inflammation of weaned piglets challenged with Salmonella typhimurium.


2020 ◽  
Vol 11 ◽  
Author(s):  
Han Liu ◽  
Congmin Wang ◽  
Xueling Gu ◽  
Jing Zhao ◽  
Cunxi Nie ◽  
...  

The study investigated the impact of dietary montmorillonite on the growth performance, intestinal mucosal barrier, and microbial community in weaned piglets with control group (CON) and dietary supplementation of 0.2% montmorillonite (0.2% M). Compared with the CON group, 0.2% M feed in the diet increased the average daily gain (ADG) on days 15–35 and day 1–35 and the average daily feed intake on days 1–35 (ADFI) (0.05 &lt; P &lt; 0.1). Besides, higher villus height of the duodenum and jejunum and lower crypt depth of duodenum and colon were revealed in the 0.2% M group than in the CON group (P &lt; 0.05). Moreover, the V/C (ratio of the villus height and crypt depth) in the 0.2% M group was increased compared to that in the CON group both from the duodenum and ileum (P &lt; 0.05). The relative mRNA expression of mucin-1, ITGB1 (β1-integrins), and PKC (protein kinase C) of ileum in the 0.2% M group were upregulated (P &lt; 0.05) compared to that in the CON group. The digesta sample of ileum from piglets in the 0.2% M group contained greater (P &lt; 0.05) intestinal bacterial diversity and abundances of probiotics, such as Streptococcus, Eubacterium_rectale_group, and Lactobacillus, which could promote the synthesis of carbon-containing biomolecules. Overall, dietary supplementation of 0.2% M was shown to have a tendency to improve the growth performance of weaned piglets and may enhance their intestinal mucosal barrier function via altering the gut microbiota.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 472-474
Author(s):  
Jing Wang ◽  
Bi E Tan ◽  
Jianjun Li ◽  
Ming Qi ◽  
Wenkai Ren ◽  
...  

Abstract Weaning-stress decreases the digestive and absorptive capacity of small intestine in piglets, resulting in reduction in energy intake for intestine cells and defects in epithelial structure. As glutamine (Gln), glutamate (Glu), and aspartate (Asp) are major energy sources for small intestine; thus, this study was conducted to test the hypotheses that supplementation with Gln, Glu, and Asp in diets will improve the intestinal morphology and tight junction in weaning piglets. 198 weaned piglets were assigned to the following treatments: i) Control (Basal diet + 1.59% L-Alanine); ii) T1 (Basal diet + 1% L-Glutamine + 0.5% L-Glutamate + 0.1% L-Aspartate); iii) T2 (Low energy diet + 1% L-Glutamine + 0.5% L-Glutamate + 0.1% L-Aspartate). The small intestinal samples were obtained on 5 or 21-day-post-weaning. The results showed that basal dietary supplementation with Gln, Glu, and Asp in basal diet improved the final body weight (BW), average daily gain (ADG) of piglets on 21-day of post-weaning. Supplementation with Gln, Glu, and Asp in diet with low energy decreased the villus height and crypt depth in ileum of piglets on 5-day-post-weaning, but increased villus height and goblet cell number in jejunum on 21-day post-weaning compared with those in control group. On 5-day-post-weaning, high mRNA levels of voltage-gated potassium (Kv) 1.1 in ileum and Kv 1.5 in jejunum were observed in T 1 and T 2 groups, respectively. Other indicators were higher than those in control piglets on day 5 or 21 post-weaning, including protein abundances of claudin-1, laudin-3 and occluding, and the percentage of proliferating cell nuclear antigen (PCNA)-positive cells in jejunum and ileum in T 1 or T 2 groups. Collectively, these findings indicated that Gln, Glu, and Asp can alleviate the intestinal barrier injury in piglets induced by weaning stress even under low energy diet.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3314
Author(s):  
Ruijuan Gao ◽  
Chunjie Wang ◽  
Aricha Han ◽  
Yanping Tian ◽  
Shunan Ren ◽  
...  

The effect of emodin on the intestinal mucosal barrier of a mouse E. coli O1-induced diarrhea model was observed. Following successful establishment of a diarrhea model, the mice were treated with drugs for seven days. Intestinal lesions and the shape and the number of goblet cells were assessed via hematoxylin-eosin and periodic-acid-Schiff staining, while changes in inflammatory factors, ultrastructure of the small intestine, expression of MUC-2, and changes in the intestinal microbiota were analyzed via RT-PCR, electron microscopy, immunofluorescence, and 16S rRNA sequencing. Examination showed that emodin ameliorated pathological damage to the intestines of diarrheic mice. RT-PCR indicated that emodin reduced TNF-α, IL-β, IL-6, MPO, and COX-2 mRNA levels in duodenal tissues and increased the levels of sIgA and MUC-2 and the number of goblet cells. Microbiome analysis revealed that Escherichia coli O1 reduced bacterial richness and altered the distribution pattern of bacterial communities at the phylum and order levels in cecum contents. Notably, pathogenic Clostridiales and Enterobacteriales were significantly increased in diarrheic mice. However, emodin reversed the trend. Thus, emodin protected against intestinal damage induced by E. coli O1 and improved intestinal mucosal barrier function in mice by increasing the abundance of beneficial intestinal microbiota and inhibiting the abundance of harmful bacteria, thereby alleviating diarrhea.


2013 ◽  
Vol 110 (10) ◽  
pp. 1837-1848 ◽  
Author(s):  
Hong Chen ◽  
Xiangbing Mao ◽  
Jun He ◽  
Bing Yu ◽  
Zhiqing Huang ◽  
...  

The objective of the present study was to evaluate the effects of fibre source on intestinal mucosal barrier function in weaning piglets. A total of 125 piglets were randomly allotted on the basis of their body weight and litters to one of five experimental diets, i.e. a control diet without fibre source (CT), and diets in which expanded maize was replaced by 10 % maize fibre (MF), 10 % soyabean fibre (SF), 10 % wheat bran fibre (WBF) or 10 % pea fibre (PF). The diets and water were fed ad libitum for 30 d. Piglets on the WBF and PF diets had lower diarrhoea incidence compared with the MF- and SF-fed animals. A higher ratio of villous height:crypt depth in the ileum of WBF-fed piglets and higher colonic goblet cells in WBF- and PF-fed piglets were observed compared with CT-, MF- and SF-fed piglets. In the intestinal digesta, feeding WBF and PF resulted in increased Lactobacillus counts in the ileum and Bifidobacterium counts in the colon. Lower Escherichia coli counts occurred in the ileum and colon of WBF-fed piglets than in SF-fed piglets. Tight junction protein (zonula occludens 1; ZO-1) and Toll-like receptor 2 (TLR2) gene mRNA levels were up-regulated in the ileum and colon of pigs fed WBF; however, feeding MF and SF raised IL-1α and TNF-α mRNA levels. Furthermore, higher diamine oxidase activities, transforming growth factor-α, trefoil factor family and MHC-II concentration occurred when feeding WBF and PF. In conclusion, the various fibre sources had different effects on the ileal and colonic barrier function. Clearly, WBF and PF improved the intestinal barrier function, probably mediated by changes in microbiota composition and concomitant changes in TLR2 gene expression.


EP Europace ◽  
2020 ◽  
Author(s):  
J N López-Canoa ◽  
M Couselo-Seijas ◽  
A Baluja ◽  
L González-Melchor ◽  
A Rozados ◽  
...  

Abstract Aims Adiposity plays a key role in the pathogenesis of atrial fibrillation (AF). Our aim was to study the sex differences in adipokines levels according to AF burden. Methods and results Two independent cohorts of patients were studied: (i) consecutive patients with AF undergoing catheter ablation (n = 217) and (ii) a control group (n = 105). (i) Adipokines, oxidative stress, indirect autonomic markers, and leucocytes mRNA levels were analysed; (ii) correlation between biomarkers was explored with heatmaps and Kendall correlation coefficients; and (iii) logistic regression and random forest model were used to determine predictors of AF recurrence after ablation. Our results showed that: (i) fatty acid-binding protein 4 (FABP4) and leptin levels were higher in women than in men in both cohorts (P &lt; 0.01). In women, FABP4 levels were higher on AF cohort (20 ± 14 control, 29 ± 18 paroxysmal AF and 31 ± 17 ng/mL persistent AF; P &lt; 0.01). In men, leptin levels were lower on AF cohort (22 ± 15 control, 13 ± 16 paroxysmal AF and 13 ± 11 ng/mL persistent AF; P &lt; 0.01). (ii) In female with paroxysmal AF, there was a lower acetylcholinesterase and higher carbonic anhydrase levels with respect to men (P &lt; 0.05). (iii) Adipokines have an important role on discriminate AF recurrence after ablation. In persistent AF, FABP4 was the best predictor of recurrence after ablation (1.067, 95% confidence interval 1–1.14; P = 0.046). Conclusion The major finding of the present study is the sex-based differences of FABP4 and leptin levels according to AF burden. These adipokines are associated with oxidative stress, inflammatory and autonomic indirect markers, indicating that they may play a role in AF perpetuation.


Sign in / Sign up

Export Citation Format

Share Document