scholarly journals The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease

2019 ◽  
Vol 167 (3) ◽  
pp. 243-255 ◽  
Author(s):  
Matthew J Eramo ◽  
Valerie Lisnyak ◽  
Luke E Formosa ◽  
Michael T Ryan

Abstract The ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.

2020 ◽  
Vol 8 (2) ◽  
pp. 10
Author(s):  
Michael T. Chin ◽  
Simon J. Conway

Tafazzin, an enzyme associated with the rare inherited x-linked disorder Barth Syndrome, is a nuclear encoded mitochondrial transacylase that is highly conserved across multiple species and plays an important role in mitochondrial function. Numerous studies have elucidated the mechanisms by which Tafazzin affects mitochondrial function, but its effects on development and susceptibility to adult disease are incompletely understood. The purpose of this review is to highlight previous functional studies across a variety of model organisms, introduce recent studies that show an important role in development, and also to provide an update on the role of Tafazzin in human disease. The profound effects of Tafazzin on cardiac development and adult cardiac homeostasis will be emphasized. These studies underscore the importance of mitochondrial function in cardiac development and disease, and also introduce the concept of Tafazzin as a potential therapeutic modality.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 945 ◽  
Author(s):  
Shubha Gururaja Rao ◽  
Piotr Bednarczyk ◽  
Atif Towheed ◽  
Kajol Shah ◽  
Priyanka Karekar ◽  
...  

BKCa channels, originally discovered in Drosophila melanogaster as slowpoke (slo), are recognized for their roles in cellular and organ physiology. Pharmacological approaches implicated BKCa channels in cellular and organ protection possibly for their ability to modulate mitochondrial function. However, the direct role of BKCa channels in regulating mitochondrial structure and function is not deciphered. Here, we demonstrate that BKCa channels are present in fly mitochondria, and slo mutants show structural and functional defects in mitochondria. slo mutants display an increase in reactive oxygen species and the modulation of ROS affected their survival. We also found that the absence of BKCa channels reduced the lifespan of Drosophila, and overexpression of human BKCa channels in flies extends life span in males. Our study establishes the presence of BKCa channels in mitochondria of Drosophila and ascertains its novel physiological role in regulating mitochondrial structural and functional integrity, and lifespan.


2007 ◽  
Vol 30 (4) ◽  
pp. 47
Author(s):  
P. Pace-Asciak ◽  
T. Gelfand

Medical students depend on illustration to learn anatomical facts and details that may be too subtle for the written or spoken word. For surgical disciplines, learners rely on tools such as language, 2-dimensional illustrations, and 3-dimensional models to pass on important concepts. Although a photograph can convey factual information, illustration can highlight and educate the pertinent details for understanding surgical procedures, neurovascular structures, and the pathological disease processes. In order to understand the current role of medical illustration in education, one needs to look to the past to see how art has helped solve communication dilemmas when learning medicine. This paper focuses on Max Brodel (1870-1941), a German-trained artist who eventually immigrated to the United States to pursue his career as a medical illustrator. Shortly after his arrival in Baltimore, Brodel made significant contributions to medical illustration in Gynecology at John Hopkins University, and eventually in other fields of medicine such as Urology and Otolaryngology. Brodel is recognized as one of America’s most distinguished medical illustrators for creating innovative artistic techniques and founding the profession of medical illustration. Today, animated computer based art is synergistically used with medical illustration to educate students about anatomy. Some of the changes that have occurred with the advancement of computer technology will be highlighted and compared to a century ago, when illustrations were used for teaching anatomy due to the scarcity of cadavers. Schultheiss D, Udo J. Max Brodel (1870-1941) and Howard A.Kelly (1858-1943) – Urogynecology and the birth of modern medical illustration. European Journal of Obstetrics & gynecology and Reproductive Biology 1999; 86:113-115. Crosby C. Max Brodel: the man who put art into medicine. New York: Springer-Verlag, 1991. Papel ID. Max Brodel’s contributions to otolaryngology – Head and Neck surgery. The American Journal of Otology 1986; 7(6):460-469.


2018 ◽  
Vol 28 (7) ◽  
pp. 2543-2548
Author(s):  
Petya Kasnakova

The games play a special role in rehabilitation practice. The positive emotions they cause in patients cannot be achieved by other methods and means of modern rehabilitation. The role of game playing activity in practice is crucial to the achievement of one of the important tasks in implementing rehabilitation measures, namely to evacuate the patient from the depressed mental state, to distract him from the disease process and to focus on mobilizing his healing powers. The mood, the emotional charge and the dynamics that the games create are particularly suited to awakening the patient's interest in the healing process, their attraction and their active involvement in the rehabilitation activities. The connection between the actions in the game and the movements in the analytical exercises accelerates the formation of motor habits, physical qualities and skills not only in children but also in adult patients with various pathological injuries. Rehabilitation games are suitable for all ages by enhancing the health of the occupants, developing their mental qualities, improving the activity of the vestibular, visual and motor analyzers. The basis of the motor movement training game methodology and the improvement of motor movement skills is the activation of the thought processes and emotional experiences, the development of the functions of the musculoskeletal system, the cardiovascular system and the respiratory system.


FEBS Letters ◽  
2019 ◽  
Vol 593 (18) ◽  
pp. 2525-2534 ◽  
Author(s):  
Jinran Li ◽  
Rihua Jiang ◽  
Xianling Cong ◽  
Yunfeng Zhao

Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Sandra Handgraaf ◽  
Rodolphe Dusaulcy ◽  
Florian Visentin ◽  
Jacques Philippe ◽  
Yvan Gosmain

Abstract Characterization of enteroendocrine L cells in diabetes is critical for better understanding of the role of glucagon-like peptide-1 (GLP-1) in physiology and diabetes. We studied L-cell transcriptome changes including microRNA (miRNA) dysregulation in obesity and diabetes. We evaluated the regulation of miRNAs through microarray analyses on sorted enteroendocrine L cells from control and obese glucose-intolerant (I-HFD) and hyperglycemic (H-HFD) mice after 16 weeks of respectively low-fat diet (LFD) or high-fat diet (HFD) feeding. The identified altered miRNAs were studied in vitro using the mouse GLUTag cell line to investigate their regulation and potential biological functions. We identified that let-7e-5p, miR-126a-3p, and miR-125a-5p were differentially regulated in L cells of obese HFD mice compared with control LFD mice. While downregulation of let-7e-5p expression was observed in both I-HFD and H-HFD mice, levels of miR-126a-3p increased and of miR-125a-5p decreased significantly only in I-HFD mice compared with controls. Using miRNA inhibitors and mimics we observed that modulation of let-7e-5p expression affected specifically GLP-1 cellular content and basal release, whereas Gcg gene expression and acute GLP-1 secretion and cell proliferation were not affected. In addition, palmitate treatment resulted in a decrease of let-7e-5p expression along with an increase in GLP-1 content and release, suggesting that palmitate acts on GLP-1 through let-7e-5p. By contrast, modulation of miR-125a-5p and miR-126a-3p in the same conditions did not affect content or secretion of GLP-1. We conclude that decrease of let-7e-5p expression in response to palmitate may constitute a compensatory mechanism contributing to maintaining constant glycemia in obese mice.


Sign in / Sign up

Export Citation Format

Share Document