scholarly journals Computational analysis of bioconvective flow of nanofluid containing gyrotactic microorganisms over a nonlinear stretching sheet with variable viscosity using HAM

2020 ◽  
Vol 7 (2) ◽  
pp. 251-267 ◽  
Author(s):  
Surya Kanta Mondal ◽  
Dulal Pal

Abstract This paper is concerned with the investigation of variable viscosity bioconvection flow of nanofluid containing motile gyrotactic microorganisms over a nonlinear stretching sheet in the presence of nonlinear thermal radiation, chemical reaction, internal heat source, and suction/injection effects. The homotopy analysis method has been developed for solving the governing nonlinear differential equations of the boundary layer flow of nanofluid over a stretching sheet. The scaling group transformation (a special form of Lie group transformation) has been applied to find the similarity variable $\eta $. Figures are drawn by using Mathematica software to analyze the results that correspond to some important physical parameters and bioconvection parameters on velocity, temperature, nanoparticle concentration, and density of gyrotactic microorganisms. It is found that the influence of variable viscosity on velocity profiles showed that there is an increase in the velocity profiles of nanofluid and the reverse effect is observed on its temperature distribution. It is seen that the thermal radiation parameter increases the temperature distribution, whereas it decreases the nanoparticle concentration distribution. It is also found that the inverse Darcy number reduces the velocity profile, whereas it enhances the temperature distribution. This work may find applications in advanced nanomechanical bioconvection energy conversion devices, bio-nanocoolant systems, etc.

2019 ◽  
Vol 30 (8) ◽  
pp. 3919-3938 ◽  
Author(s):  
Ankita Bisht ◽  
Rajesh Sharma

Purpose The purpose of this study is to provide a numerical investigation of Casson nanofluid along a vertical nonlinear stretching sheet with variable thermal conductivity and viscosity. Design/methodology/approach The boundary-layer equations are presented in the dimensionless form using proper non-similar transformations. The subsequent non-dimensional nonlinear partial differential equations are solved using the implicit finite difference technique. To linearize the nonlinear terms present in these equations, the quasilinearization technique is used. Findings The investigation showed graphically the temperature, velocity and nanoparticle volume fraction for particular included physical parameters. It is observed that the velocity profile decreases with an increase in the values of Casson fluid parameter while increases with an increase in the viscosity variation parameter. The temperature profile enhances for large values of velocity variation parameter and thermal conductivity parameter while it reduces for large values of thermal buoyancy parameter. Further, the Nusselt number and skin-friction coefficient are introduced which are helpful in determining the physical aspects of Casson nanofluid flow. Practical implications The immediate control of heat transfer in the industrial system is crucial because of increasing energy prices. Recently, nanotechnology is proposed to control the heat transfer phenomenon. Ongoing research in complex nanofluid has been fruitful in various applications such as solar thermal collectors, nuclear reactors, electronic equipment and diesel–electric conductor. A reasonable amount of nanoparticle when added to the base fluid in solar thermal collectors serves to deeper absorption of incident radiation, and hence it upgrades the efficiency of the solar thermal collectors. Originality/value The non-similar solution of Casson nanofluid due to a vertical nonlinear stretching sheet with variable viscosity and thermal conductivity is discussed in this work.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 121-130
Author(s):  
Nur Faizzati Ahmad Faizal ◽  
Norihan Md Ariffin ◽  
Yong Faezah Rahim ◽  
Mohd Ezad Hafidz Hafidzuddin ◽  
Nadihah Wahi

In the presence of slips, non-uniform heat source/sink, thermal radiation and magnetohydrodynamic (MHD), micropolar hybrid nanofluid and heat transfer over a stretching sheet has been studied. The problem is modelled as a mathematical formulation that involves a system of the partial differential equation. The similarity approach is adopted, and self-similar ordinary differential equations are obtained and then those are solved numerically using the shooting method. The flow field is affected by the presence of physical parameters such as micropolar parameter, magnetic field parameter, suction parameter and slip parameter whereas the temperature field is affected by thermal radiation parameter, space-dependent parameter, temperature-dependent internal heat generation/absorption parameter, Prantl number and Biot number. The skin friction coefficient, couple stress and local Nusselt number are tabulated and analysed. The effects of the governing parameters on the velocity profiles, angular velocity profiles and temperature profiles are illustrated graphically. The results of velocity profiles, angular velocity profiles and temperature profiles are also obtained for several values of each parameters involved.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
M.R. Krishnamurthy ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

AbstractA theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1048
Author(s):  
Syed Muhammad Ali Haider ◽  
Bagh Ali ◽  
Qiuwang Wang ◽  
Cunlu Zhao

In this paper, a mathematical model is established to examine the impacts of Stefan blowing on the unsteady magnetohydrodynamic (MHD) flow of an electrically conducting nanofluid over a stretching sheet in the existence of thermal radiation, Arrhenius activation energy and chemical reaction. It is proposed to use the Buongiorno nanofluid model to synchronize the effects of magnetic and electric fields on the velocity and temperature fields to enhance the thermal conductivity. We utilized suitable transformation to simplify the governing partial differential equation (PDEs) into a set of nonlinear ordinary differential equations (ODEs). The obtained equations were solved numerically with the help of the Runge–Kutta 4th order using the shooting technique in a MATLAB environment. The impact of the developing flow parameters on the flow characteristics is analyzed appropriately through graphs and tables. The velocity, temperature, and nanoparticle concentration profiles decrease for various values of involved parameters, such as hydrodynamic slip, thermal slip and solutal slip. The nanoparticle concentration profile declines in the manifestation of the chemical reaction rate, whereas a reverse demeanor is noted for the activation energy. The validation was conducted using earlier works published in the literature, and the results were found to be incredibly consistent.


Sign in / Sign up

Export Citation Format

Share Document