Green Peach Aphid Populations on Potatoes Enhanced by Fungicides12

1971 ◽  
Vol 64 (6) ◽  
pp. 1569-1570 ◽  
Author(s):  
Henry W. Nanne ◽  
Edward B. Radcliffe
2020 ◽  
Vol 13 ◽  
pp. 110-114
Author(s):  
Andrei Chiriloaie-Palade ◽  
Mădălina Radulea ◽  
Gheorghe Lămureanu ◽  
Ștefan Ion Mocanu ◽  
Maria Iamandei

"The cosmopolitan aphid species Myzus persicae is a key pest of peach orchards in south and southeastern Romania. The phenomenon of resistance induced by the intensive use of insecticides is a matter of concern for farmers and protectionists, making necessary integrated measure for the control of this pest. Conservation of natural enemy’s populations is an essential component of any management system proposed for pest aphids. The aim of the study was to determine the structure of predatory insects associated with Myzus persicae populations in peach orchards. The research was carried out in three orchards from two localities from Constanta County, in peach plantations with Springcrest variety aged 7, 11 and 12 years. As a result of this study, there were determined a total of 15 predatory insect species belonging to eight systematic families: Coccinellidae, Chrysopidae, Hemerobiidae, Syrphydae, Cecidomyiidae, Panorpidae, Nabidae and Forficulidae, which naturally contribute to the reduction of the green peach aphid populations. "


2020 ◽  
pp. 1-24
Author(s):  
Mouhammad Shadi Khudr ◽  
Lea Fliegner ◽  
Oksana Y. Buzhdygan ◽  
Susanne Wurst

Abstract The dynamics of interactions amongst natural enemies are central to the investigation of insect pest ecology. Ternary and quaternary interactions between parasitoids and predators in the presence of entomophagous organisms are yet to be comprehensively explored. We investigated the performance of a clone of green peach aphid (Myzus persicae (Sulzer); Hemiptera: Aphididae), raised on savoy cabbage (Brassica oleracea Linnaeus; Brassicaceae), under all possible combinations of: I) the parasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae); II) the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae); III) the predator Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae); and IV) the spider Parasteatoda tepidariorum (Koch) (Araneae: Theridiidae). We demonstrate a considerably differential green peach aphid abundance, polyphenism, and fine-scale spatial distribution in response to the combination, number, and identity of the present enemy species and their interactions. Surprisingly, certain combinations led to thriving green peach aphid populations due to interference between enemies; whereas, other combinations resulted in tangible collective suppression of the population. At the frontier of agroecology and entomology, we provide fresh insights on the effects of conflict and synergy between natural enemies sharing a pest of a cash crop as prey, highlighting the consequences of the presence of a novel synanthropic spider, as a top predator, on pest regulation.


1962 ◽  
Vol 55 (4) ◽  
pp. 501-504 ◽  
Author(s):  
R. C. Dickson ◽  
E. F. Laird

2008 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Paul McLeod ◽  
Steven Eaton ◽  
Larry Martin

The green peach aphid, Myzus persicae Sulzer, a common pest of spinach produced in the Arkansas River Valley of western Arkansas and eastern Oklahoma, is currently managed with foliar applications of neonicotinoid insecticides. Data reported herein indicate that the neonicotinoid insecticdes, imidacloprid and thiamethoxam, can also be applied to spinach seed and into the soil for effective aphid management. In greenhouse studies both imidacloprid (Gaucho) and thiamethoxam (Cruiser) seed treatments were effective against adults and prevented the establishment of juvenile aphids for a period of 12 weeks after planting. Similar results were obtained in field studies. Regardless of rate, each of the neonicotinoid seed treatments significantly reduced the number of aphids when compared to aphid population levels on non-treated spinach. In addition to the seed treatments, in-furrow applications also resulted in significantly lower aphid numbers than on plants in plots not receiving the applications. Tests also demonstrated that imidacloprid (Admire) effectively managed aphid populations after being injected into the soil. Of the seed and soil applications evaluated, the only application method currently available is use of imidacloprid applied into the soil. This method currently offers the spinach producer an alternative management tool for green peach aphid control on spinach. As the labels of imidacloprid and other neonicotinoid insecticides are expanded to include additional use patterns such as seed treatments, effective alternatives to foliar sprays should prove effective for aphid management on spinach. Accepted for publication 10 November 2007. Published 8 February 2008.


1956 ◽  
Vol 49 (2) ◽  
pp. 164-166 ◽  
Author(s):  
E. C. Klostermeyer ◽  
B. J. Landis ◽  
Ralph Schoop ◽  
Lillian I. Butler

2020 ◽  
Vol 113 (3) ◽  
pp. 1299-1306 ◽  
Author(s):  
Esther L Nampeera ◽  
Sue Blodgett ◽  
Matthew E O’Neal ◽  
Gail R Nonnecke ◽  
Lucy K Murungi ◽  
...  

Abstract The green peach aphid [Myzus persicae (Sulzer)] is an important pest of amaranth grown for leaf consumption (i.e., leafy amaranth) in the tropics. Aphids reduce the amount of fresh leaf yield of amaranth and the value of leafy amaranth as aphid-infested leaves are not marketable. Our objective was to evaluate Amaranthus species selected by a breeding program in East Africa to develop cultivars for leaf consumption with resistance to M. persicae. We focused on antibiosis to determine whether varieties of Amaranthus spp. could be grown without producing an aphid population. Artificial infestations of aphids were placed on multiple selections of three species of Amaranthus: two selections of A. blitum, four selections of A. hybridus and one selection of A. hypochondriacus. Aphid populations were assessed over a 5-wk period. Evaluations of vegetative yield, leaf damage symptoms, and specific leaf area (SLA) were made of the seven selections at the end of this experiment. Aphid populations assessed 49 d after planting differed significantly (P ≤ 0.001) among the amaranth species and within selections of the same species. The selections of A. blitum had the lowest aphid populations, and A. hybridus had the highest populations. Selections of A. hybridus produced the most marketable leaves (i.e., aphid free). The fresh weight of A. blitum were the lowest of the seven selections, whereas A. hybridus had the greatest fresh leaf weight. Implications of these finding for further promotion of amaranth breeding are discussed related to pest management for leaf production.


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1279-1281 ◽  
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

`Sunny' tomato (Lycopersicon esculentum Mill.), `Black Beauty' eggplant (Solanum melongena var. esculentum L. Nees.), or `Sugar Baby' watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] were nontreated, subjected to brushing (20 strokes twice daily) or drought conditioning (2 hours daily wilt), or maintained undisturbed using ebb-and-flow irrigation. One week after brushing or drought conditioning, plants were inoculated with western flower thrips (Frankliniella occidentalis Pergande) or green peach aphid (Myzus persicae Sulzer). Brushing and drought conditioning reduced plant height and shoot dry weight of all crops. Brushing of all three species generally reduced the number of thrips, as indicated by number of feeding scars or percent leaf area damaged. Drought conditioning did not affect thrips populations consistently. Undisturbed plants grown with ebb-and-flow irrigation exhibited the greatest damage from thrips. Brushing reduced the number of aphids on tomato relative to the nontreated controls. Drought did not reduce aphid populations consistently on any crop. Brushing for height control may be advantageous in an integrated pest-management program to control aphids and thrips.


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Sign in / Sign up

Export Citation Format

Share Document