Evaluation of Trap Cropping for Control of Diamondback Moth (Lepidoptera: Plutellidae) in a Broccoli Production System

2020 ◽  
Vol 113 (4) ◽  
pp. 1864-1871
Author(s):  
S Sherbrooke ◽  
Y Carrière ◽  
J C Palumbo

Abstract Trap cropping, in which a trap crop is planted near a cash crop, has been used successfully for reducing pest damage in some agricultural systems. We used a meta-analysis of extensive data on two trap cropping systems, diamondback moth, Plutella xylostella (Linnaeus), exploiting cabbage and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) exploiting maize, to show that oviposition preference for, and high larval mortality on trap crops are important indicators of effectiveness of trap cropping systems. We then evaluated Indian mustard (Brassica juncea var. juncea L. Czern.) (Capparidales: Brassicaceae) and yellow rocket (Barbarea vulgaris W. T. Aiton) (Brassicales: Brassicaceae) as trap crops for protecting broccoli (Brassica oleracea var. italica Plenck) (Capparidales: Brassicaceae) against diamondback moth in Yuma, AZ, using planting configurations compatible with current practices for commercial production and without use of insecticides. In oviposition choice tests, both yellow rocket and Indian mustard were highly preferred over broccoli in the field. Furthermore, the number of larvae and pupae was significantly lower on yellow rocket and Indian mustard compared to broccoli, indicating relatively high mortality on these trap crops. Nevertheless, during the fall and spring growing seasons, no significant differences in the number of individuals on broccoli or proportion of broccoli crowns infested at harvest occurred between plots with trap crops relative to plots exclusively planted to broccoli. Thus, with the plant density and planting patterns used and without use of insecticides, there was no evidence that trap cropping was effective for reducing diamondback moth infestation of broccoli.

2004 ◽  
Vol 94 (6) ◽  
pp. 481-486 ◽  
Author(s):  
P.R. Grundy ◽  
R.V. Sequeira ◽  
K.S. Short

AbstractMounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland's cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an area-wide management programme for Helicoverpa spp. is discussed.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 524g-524
Author(s):  
Hector R. Valenzuela ◽  
Joseph DeFrank ◽  
Greg Luther

The diamondback moth (DBM). Plutella xylostella, is the number one pest of cabbage in the the world. The pest is resistant to most pesticides registered for its use, and resistance has also been detected in several areas for registered biopesticides. Four experiments were conducted to: 1) Determine the tolerance to DBM feeding among 20 commercial head cabbage cultivars, 2) Evaluate the effect of three nitrogen fertility levels on DBM numbers. and 3) Evaluate the effect of Indian mustard. Brassica juncea trap crops as a tool to manage DBM populations in head cabbage agroecosystems. Experiments were conducted at University of Hawaii experiment stations located in Kamuela. Hawaii, and in Kula, Maui. The trap crop treatments consisted of planting two border rows of Indian mustard in cabbage field borders. Three or 4 biweekly insect counts were conducted for each trial. Insect counts consumed of destructive sampling of 3-6 plants per plot and determination of larvae and pupae number and parasitation levels. The nitrogen studies found more DBM in monoculture cabbage receiving 300 kg Ha-1 N than in controls even though cabbage yields did not vary among treatments. A range of tolerance to DBM feeding was found among the cultivars tested. The trap crop system was shown to be more effective during the summer than in the winter months. Data indicates that the trap crop also acted as attractant for beneficial insects, which may aid in the biological control of DBM in cabbage


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 268B-268
Author(s):  
David A. Bender ◽  
William P. Morrison

Indian mustard trap crops have successfully reduced pesticide use on commercial cabbage in India. Diamondback moth has been a serious pest of cabbage in Texas and has demonstrated resistance to most classes of insecticides. Use of a trap crop could fit well in an integrated management program for cabbage insects, Three-row plots of spring and fall cabbage were surrounded by successive single-row plantings of Indian mustard in trials at Lubbock, Texas to determine the efficacy of interplanting for reducing insecticide applications. Insects in the cabbage and Indian mustard were counted twice weekly, and insecticides were applied selectively when economic thresholds were reached. Indian mustard was highly attractive to harlequin bugs, and protected intercropped spring cabbage. Cabbage plots without mustard required two insecticide applications to control the infestation. False chinch bugs were also highly attracted to Indian mustard. Lepidopterous larvae, including diamondback moth, did not appear to be attracted to the trap crop. Indian mustard trap crops reduced insecticide applications to spring cabbage but had no positive effect on fail cabbage.


2018 ◽  
Vol 112 (4) ◽  
pp. 318-329 ◽  
Author(s):  
Francisco Rubén Badenes-Pérez

Abstract This paper reviews the most important cases of trap crops and insectary plants in the order Brassicales. Most trap crops in the order Brassicales target insects that are specialist in plants belonging to this order, such as the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), the pollen beetle, Meligethes aeneus Fabricius (Coleoptera: Nitidulidae), and flea beetles in the genera Phyllotreta and Psylliodes (Coleoptera: Chrysomelidae). In most cases, the mode of action of these trap crops is the preferential attraction of the insect pest for the trap crop located next to the main crop. With one exception, these trap crops in the order Brassicales have been used with brassicaceous crops. Insectary plants in the order Brassicales attract a wide variety of natural enemies, but most studies focus on their effect on aphidofagous hoverflies and parasitoids. The parasitoids benefiting from insectary plants in the order Brassicales target insects pests ranging from specialists, such as P. xylostella, to highly polyfagous, such as the stink bugs Euschistus conspersus Uhler and Thyanta pallidovirens Stål (Hemiptera: Pentatomidae). In the order Brassicales, the three most common trap crops are Indian mustard, Brassica juncea (L.) Czern, Chinese cabbage, Brassica rapa L., and yellow rocket, Barbarea vulgaris R. Br., while the three most common insectary plants are sweet alyssum, Lobularia maritima (L.) Desv., white mustard, Sinapis alba L, and B. vulgaris. Except for Tropaeolum majus L. (Tropaeolaceae) and Capparis decidua (Forssk.) Edgew. (Capparaceae), the tested trap crops and insectary plants in the order Brassicales belong to the family Brassicaceae.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


2004 ◽  
Vol 94 (6) ◽  
pp. 509-516 ◽  
Author(s):  
Jian-hua Lu ◽  
Shu-sheng Liu ◽  
A.M. Shelton

AbstractThe term ‘dead-end trap cropping’ has recently been proposed to identify a plant that is highly attractive for oviposition by an insect pest, but on which offspring of the pest cannot survive. The potential of the wild crucifer Barbarea vulgaris R. Br. to allure and serve as a dead-end trap crop for the diamondback moth Plutella xylostella (L.), an important pest of cruciferous crops worldwide, was examined in laboratory experiments. When P. xylostella adults were provided with a dual-choice of plants of B. vulgaris, and Chinese cabbage Brassica campestris (L.), in one arena, adult moths laid 2.5–6.8 times more eggs on the former than on the latter. When P. xylostella adults were provided with a dual-choice of plants of B. vulgaris and common cabbage Brassica oleracea L., adult moths laid virtually all their eggs on the former and ignored the latter. Nearly all P. xylostella eggs laid on the three species of plants hatched successfully, but nearly all individuals on plants of B. vulgaris died as neonates or early instar larvae, while 87–100% of the larvae on Chinese cabbage and common cabbage survived to pupation. Dual choice tests with a Y-tube olfactometer showed that volatiles from B. vulgaris were much more attractive to P. xylostella adults than those from common cabbage. The results demonstrate that B. vulgaris has a great potential as a dead-end trap crop for improving management of P. xylostella. Factors that may influence the feasibility of using B. vulgaris as a trap crop in the field are discussed, and ways to utilize this plant are proposed.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
Fabrice Lamy ◽  
Laura Bellec ◽  
Amélie Rusu-Stievenard ◽  
Pauline Clin ◽  
Claire Ricono ◽  
...  

The development of integrated pest management strategies becomes more and more pressing in view of potential harmful effects of synthetic pesticides on the environment and human health. A promising alternative strategy against Delia radicum is the use of trap crops. Chinese cabbage (Brassica rapa subsp. pekinensis and subsp. chinensis) is a highly sensitive Brassicaceae species previously identified as a good candidate to attract the cabbage root fly away from other crops. Here, we carried out multi-choice experiments both in the laboratory and in field conditions to measure the oviposition susceptibilities of different subspecies and cultivars of Chinese cabbages as compared to a broccoli reference. We found large differences among subspecies and cultivars of the Chinese cabbage, which received three to eleven times more eggs than the broccoli reference in field conditions. In laboratory conditions, the chinensis subspecies did not receive more eggs than the broccoli reference. We conclude that D. radicum largely prefers to lay eggs on the pekinensis subspecies of Chinese cabbage compared to the chinensis subspecies or broccoli. Some pekinensis cultivars, which received over ten times more eggs than broccoli in the field, appear especially promising candidates to further develop trap crop strategies against the cabbage root fly.


2019 ◽  
Vol 112 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Ayanava Majumdar ◽  
Matthew Price

Abstract Vegetable production in the Southeast is always at high risk from insect pests. Alternative integrated pest management (IPM) systems have to be effective in small plot as well as at the farming scale. This article explores the recent studies on large-scale trap crops using single or multiple cultivars and innovative layouts for long-term pest reduction. Trap crops must be planned carefully under high pest pressure and drought conditions along with an insecticide use strategy that minimizes external inputs and conserves natural enemies. Through participatory research approach, trap crop systems continue to evolve into practical solutions for the vegetable producers.


2010 ◽  
Vol 142 (3) ◽  
pp. 222-233 ◽  
Author(s):  
Micaela Buteler ◽  
David K. Weaver ◽  
Phil L. Bruckner ◽  
Gregg R. Carlson ◽  
James E. Berg ◽  
...  

AbstractTrap crops are a plausible control strategy for the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), especially in alternate wheat−fallow cropping systems. Identifying the most suitable winter wheat (Triticum aestivum L., Poaceae) cultivars is necessary to further improve the effectiveness of winter wheat trap crops. We compared cultivars suitable for cultivation in Montana to identify those that exhibit the greatest potential as trap crops. To accomplish this we used nine winter wheat cultivars to analyze plant characteristics that influence the oviposition behavior of the WSS: stem height, stem diameter, rate of plant development, and emission of the WSS attractant (Z)-3-hexenyl acetate. Data on sawfly-induced stem cutting collected from these cultivars in field nurseries were analyzed to evaluate the potential of each cultivar to attract sawflies. Based on these criteria, five cultivars with good potential as trap crops are ‘Norstar’, ‘Neeley’, ‘Morgan’, ‘Rampart’, and ‘BigSky’. More data from laboratory preference tests and detailed measurement of semiochemical production from these cultivars are required for selecting optimal cultivars for trap-cropping.


Sign in / Sign up

Export Citation Format

Share Document