scholarly journals Screen Mesh Size for Exclusion of Diaphorina citri (Hemiptera: Liviidae) in Citrus Production

2020 ◽  
Vol 113 (4) ◽  
pp. 2026-2030
Author(s):  
Timothy A Ebert ◽  
Laura Waldo ◽  
Daniel Stanton ◽  
Arnold W Schumann

Abstract Huanglongbing is a citrus disease that reduces yield, crop quality, and eventually causes tree mortality. The putative causal agent, Candidatus Liberibacter asiaticus (Rhizobiales: Rhizobiaceae), is vectored by the Asian citrus psyllid, Diaphorina citri Kuwayama. Disease management is largely through vector control, but the insect is developing pesticide resistance. A nonchemical approach to vector management is to grow citrus under screen cages either as bags over individual trees or enclosures spanning many acres. The enclosing screen reduces wind, alters temperature relative to ambient, and excludes a variety of pests that are too large to pass through the screen. Here we evaluated the potential of six screens to exclude D. citri. We conclude that screens with rectangular openings need to limit the short side to no more than 384.3 µm with a SD of 36.9 µm (40 mesh) to prevent psyllids from passing through the screen. The long side can be at least 833 µm, but the efficacy of screens exceeding this value should be tested before using in the field.

2014 ◽  
Vol 104 (4) ◽  
pp. 416-421 ◽  
Author(s):  
Helvecio D. Coletta-Filho ◽  
Matthew P. Daugherty ◽  
Cléderson Ferreira ◽  
João R. S. Lopes

Over the last decade, the plant disease huanglongbing (HLB) has emerged as a primary threat to citrus production worldwide. HLB is associated with infection by phloem-limited bacteria (‘Candidatus Liberibacter’ spp.) that are transmitted by the Asian citrus psyllid, Diaphorina citri. Transmission efficiency varies with vector-related aspects (e.g., developmental stage and feeding periods) but there is no information on the effects of host–pathogen interactions. Here, acquisition efficiency of ‘Candidatus Liberibacter asiaticus’ by D. citri was evaluated in relation to temporal progression of infection and pathogen titer in citrus. We graft inoculated sweet orange trees with ‘Ca. L. asiaticus’; then, at different times after inoculation, we inspected plants for HLB symptoms, measured bacterial infection levels (i.e., titer or concentration) in plants, and measured acquisition by psyllid adults that were confined on the trees. Plant infection levels increased rapidly over time, saturating at uniformly high levels (≈108 copy number of 16S ribosomal DNA/g of plant tissue) near 200 days after inoculation—the same time at which all infected trees first showed disease symptoms. Pathogen acquisition by vectors was positively associated with plant infection level and time since inoculation, with acquisition occurring as early as the first measurement, at 60 days after inoculation. These results suggest that there is ample potential for psyllids to acquire the pathogen from trees during the asymptomatic phase of infection. If so, this could limit the effectiveness of tree rouging as a disease management tool and would likely explain the rapid spread observed for this disease in the field.


2017 ◽  
Vol 30 (7) ◽  
pp. 543-556 ◽  
Author(s):  
Nabil Killiny ◽  
Yasser Nehela

Huanglongbing (HLB) is currently the largest threat to global citrus production. We examined the effect of HLB pathogen ‘Candidatus Liberibacter asiaticus’ infection or infestation by its vector, Diaphorina citri, on ‘Valencia’ sweet orange leaf pigments using high-performance liquid chromatography, followed by gene expression analysis for 46 involved genes in carotenoid and chlorophyll biosynthesis pathways. Both ‘Ca. L. asiaticus’ and D. citri alter the total citrus leaf pigment balance with a greater impact by ‘Ca. L. asiaticus’. Although zeaxanthin was accumulated in ‘Ca. L. asiaticus’-infected leaves, chlorophyllide a was increased in D. citri-infested plants. Our findings support the idea that both ‘Ca. L. asiaticus’ and D. citri affect the citrus pigments and promote symptom development but using two different mechanisms. ‘Ca. L. asiaticus’ promotes chlorophyll degradation but accelerates the biosynthesis of carotenoid pigments, resulting in accumulation of abscisic acid and its precursor, zeaxanthin. Zeaxanthin also has a photoprotective role. By contrast, D. citri induced the degradation of most carotenoids and accelerated chlorophyll biosynthesis, leading to chlorophyllide a accumulation. Chlorophyllide a might have an antiherbivory role. Accordingly, we suggest that citrus plants try to defend themselves against ‘Ca. L. asiaticus’ or D. citri using multifaceted defense systems, based on the stressor type. These findings will help in better understanding the tritrophic interactions among plant, pathogen, and vector.


2008 ◽  
Vol 98 (4) ◽  
pp. 387-396 ◽  
Author(s):  
K. L. Manjunath ◽  
S. E. Halbert ◽  
C. Ramadugu ◽  
S. Webb ◽  
R. F. Lee

Citrus huanglongbing (HLB or citrus greening), is a highly destructive disease that has been spreading in both Florida and Brazil. Its psyllid vector, Diaphorina citri Kuwayama, has spread to Texas and Mexico, thus threatening the future of citrus production elsewhere in mainland North America. Even though sensitive diagnostic methods have been developed for detection of the causal organisms, Candidatus Liberibacter spp., the pathogen cannot be detected consistently in plants until symptoms develop, presumably because of low titer and uneven distribution of the causal bacteria in nonsymptomatic tissues. In the present study, TaqMan based real-time quantitative polymerase chain reaction methodology was developed for detection of ‘Ca. L. asiaticus’ in D. citri. Over 1,200 samples of psyllid adults and nymphs, collected from various locations in Florida, from visually healthy and HLB symptomatic trees at different times of the year were analyzed to monitor the incidence and spread of HLB. The results showed that spread of ‘Ca. L. asiaticus’ in an area may be detected one to several years before the development of HLB symptoms in plants. The study suggests that discount garden centers and retail nurseries may have played a significant role in the widespread distribution of psyllids and plants carrying HLB pathogens in Florida.


Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1481-1488 ◽  
Author(s):  
Ronel Roberts ◽  
Glynnis Cook ◽  
Tim G. Grout ◽  
Fathiya Khamis ◽  
Ivan Rwomushana ◽  
...  

‘Candidatus Liberibacter asiaticus’, the bacterium associated with citrus Huanglongbing (HLB), was reported from Uganda and tentatively from Tanzania, posing a threat to citriculture in Africa. Two surveys of citrus expressing typical HLB symptoms were conducted in Uganda, Kenya, and Tanzania to verify reports of ‘Ca. L. asiaticus’ and to assess the overall threat of HLB to eastern and southern African citrus production. Samples were analyzed for the presence of ‘Candidatus Liberibacter’ species by real-time PCR and partial sequencing of three housekeeping genes, 16S rDNA, rplJ, and omp. ‘Ca. L. africanus’, the bacterium historically associated with HLB symptoms in Africa, was detected in several samples. However, samples positive in real-time PCR for ‘Ca. L. asiaticus’ were shown not to contain ‘Ca. L. asiaticus’ by sequencing. Sequences obtained from these samples were analogous to ‘Ca. L. africanus subsp. clausenae’, identified from an indigenous Rutaceae species in South Africa, and not to ‘Ca. L. asiaticus’. Results indicate a nontarget amplification of the real-time assay and suggest that previous reports of ‘Ca. L. asiaticus’ from Uganda and Tanzania may be mis-identifications of ‘Ca. L. africanus subsp. clausenae’. This subspecies was additionally detected in individual Diaphorina citri and Trioza erytreae specimens recovered from collection sites. This is the first report of ‘Ca. L. africanus subsp. clausenae’ infecting citrus and being associated with HLB symptoms in this host.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


2021 ◽  
Author(s):  
Lin Chun-Yi ◽  
Diann Achor ◽  
Amit Levy

Candidatus Liberibacter asiaticus (CLas), the devastating pathogen related to Huanglongbing (HLB), is a phloem-limited, fastidious, insect-borne bacterium. Rapid spread of HLB disease relies on CLas propagates efficiently in its vector, the Asian citrus psyllid, Diaphorina citri, in a circulative manner. Understanding the intracellular lifecycle of CLas in psyllid midgut is fundamental to improve current management strategies. Using a microscopic approach within CLas-infected insect midgut, we observed the entry of CLas into gut cells inside vesicles by endocytosis, termed Liberibacter containing vacuoles (LCVs). Endocytosis is followed by the formation of endoplasmic reticulum-related and replication permissive vacuoles (rLCVs). rLCVs then further develop into bigger double membrane autophagosome-like structure, termed autophagy-related vacuole (aLCV). Vesicles, containing CLas egress from aLCV and fuse with the cell membrane. Immunolocalization studies showed that CLas employs endo/exocytosis-like mechanisms that mediates bacterial invasion and egress. Upregulation of autophagy-related genes indicated subversion of host autophagy by CLas in psyllid vector to promote infection. These results indicate that CLas interacts with host cellular machineries to undergo a multistage intracellular cycle through endocytic, secretory, autophagic and exocytic pathways via complex machineries. Potential tactics for HLB controlling can be made depending on further investigations on the knowledge of the molecular mechanisms of CLas intracellular cycle.


Sign in / Sign up

Export Citation Format

Share Document