Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae)

2015 ◽  
Vol 108 (3) ◽  
pp. 1313-1323 ◽  
Author(s):  
J. Tungjitwitayakul ◽  
N. Tatun ◽  
B. Vajarasathira ◽  
S. Sakurai
2021 ◽  
Author(s):  
Haibo Hao ◽  
Jinjing Zhang ◽  
Shengdong Wu ◽  
Jing Bai ◽  
Xinyi Zhuo ◽  
...  

Abstract Low temperature is an important environmental factor that restricts the growth of Stropharia rugosoannulata; however, the molecular mechanisms underlying S. rugosoannulata responses to low-temperature stress are largely unknown. In this study, we performed a transcriptome analysis of a high-sensitivity strain (DQ-1) and low-sensitivity strain (DQ-3) under low-temperature stress. The liquid hyphae of S. rugosoannulata treated at 25°C and 10°C were analyzed by RNA-Seq, and a total of 9499 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses showed that these genes were enriched in “xenobiotic biodegradation and metabolism”, “carbohydrate metabolism”, “lipid metabolism” and “oxidoreductase activity”. Further research found that carbohydrate enzyme (AA, GH, CE, and GT) genes were downregulated more significantly in DQ-1 than DQ-3 and several cellulase activities were also reduced to a greater extent. Moreover, the CAT1, CAT2, GR, and POD genes and more heat shock protein genes (HSP20, HSP78 and sHSP) were upregulated in the two strains after low-temperature stress, and the GPX gene and more heat shock protein genes were upregulated in DQ-3. In addition, the enzyme activity and qRT–PCR results showed trends similar to those of the RNA-Seq results. This result indicates that low-temperature stress reduces the expression of different AA, GH, CE, and GT enzyme genes and reduces the secretion of cellulase, thereby reducing the carbohydrate metabolism process and mycelial growth of S. rugosoannulata. Moreover, the expression levels of different types of antioxidant enzymes and heat shock proteins are also crucial for S. rugosoannulata to resist low-temperature stress. In short, this study will provide a basis for further research on important signaling pathways, gene functions and variety breeding of S. rugosoannulata related to low-temperature stress.


1989 ◽  
Vol 9 (1) ◽  
pp. 332-335 ◽  
Author(s):  
S E Kelly ◽  
I L Cartwright

Alterations in the pattern of DNase I hypersensitivity were observed on ecdysterone-stimulated transcription of Drosophila melanogaster small heat shock protein genes. Perturbations were induced near hsp27 and hsp22, coupled with an extensive domain of chromatin unfolding in the intergenic region between hsp23 and the developmentally regulated gene 1. These regions represent candidates for ecdysterone regulatory interactions.


Sign in / Sign up

Export Citation Format

Share Document