Biological Activity of Bacillus thuringiensis in Drosophila suzukii (Diptera: Drosophilidae)

2016 ◽  
Vol 109 (3) ◽  
pp. 1071-1078 ◽  
Author(s):  
J Cossentine ◽  
M Robertson ◽  
D Xu

Abstract Whole-culture extracts of Bacillus thuringiensis Berliner strains were assayed against larval and adult Drosophila suzukii (Matsumura), an important invasive pest of many thin-skinned soft fruit crops in North America. Of the 22 serovars tested versus larval D. suzukii , strains of Bacillus thuringiensis var. thuringiensis , kurstaki , thompsoni , bolivia , and pakistani caused high (75 to 100%) first-instar mortalities. Pupal mortality, measured as a failure of adults to emerge, varied with serovar. The first D. suzukii instar was the most susceptible of the three larval instars to B. thuringiensis var. kurstaki HD-1. Larval D. suzukii are shielded from crop treatments, as they develop under the skin of infested fruit, and adults would be a more vulnerable target for an efficacious strain of B. thuringiensis . Only one of the 21 B. thuringiensis serovars, var. thuringiensis , prepared as oral suspensions in sucrose for adult D. suzukii ingestion resulted in significant, albeit low mortality within 7 d. It is not a candidate for use in pest management, as it produces β -exotoxin that is toxic to vertebrates.

Author(s):  
Samuel Cruz-Esteban ◽  
Edith Garay-Serrano ◽  
Christian Rodríguez ◽  
Julio C. Rojas

Abstract Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is recognized as an invasive pest in Europe and North America. In Mexico, it is one of the main insect pests of soft-skinned fruits such as blueberries, strawberries, raspberries, blackberries, plums, and guava. Previous studies have shown that D. suzukii uses visual and chemical cues during host plant searching. This knowledge has been used to develop traps and attractants for monitoring D. suzukii. In this study, five trap designs were evaluated to monitor D. suzukii under field conditions. Traps were baited with SuzukiiTrap®, Z-Kinol, an attractant based on acetoin and methionol, or apple cider vinegar (ACV) enriched with 10% ethanol (EtOH) with the synergistic action of carbon dioxide (CO2). Our results suggested that the attractant was the determining factor in capturing D. suzukii, while trap design seemed to play a modest role. We found that traps baited with Z-Kinol captured the highest number of D. suzukii compared to that caught by traps baited with SuzukiiTrap®, or ACV + EtOH + CO2. The highest catch numbers occurred in blackberry, followed by strawberry, raspberry, and blueberry. Traps captured more females than males. The results obtained may be useful for monitoring D. suzukii populations in Mexico and elsewhere, particularly in states where soft fruit crops are a component of agricultural activities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Fernanda Colombari ◽  
Lorenzo Tonina ◽  
Andrea Battisti ◽  
Nicola Mori

Abstract Survival and parasitism activity of Trichopria drosophilae Perkins adults, a cosmopolitan parasitoid of Drosophila spp., were studied under laboratory conditions using five constant temperatures at the lower range known for this enemy, from 4 to 20°C in 4°C increments. Drosophila suzukii Matsumura, an invasive pest of small fruits, was used as a host. Commercially available adult parasitoids were provided with 1) food and D. suzukii pupae; 2) food and no D. suzukii pupae; 3) no food and no pupae. The results show that adult females of T. drosophilae lived longer than males, and both generally benefitted from food supply. The highest level of survival was observed between 8 and 12°C for fed insects, irrespective of whether they were offered host pupae or not. The absence of food led to the highest mortality, but the parasitoid demonstrated considerably resistance to prolonged starvation. Successful parasitism increased steadily with temperature and reached the highest value at 20°C. Conversely, D. suzukii emergence rate was high after exposure of pupae to parasitoids at 4°C, while pupal mortality increased strongly with temperature until 12°C. The findings indicate that T. drosophilae is well adapted to the relatively cold conditions experienced in early spring and in autumn or at high elevations, when the host pupae could be largely available. The long lifespan of the adults and the ability to parasitize the host at low temperature make T. drosophilae potentially useful for the biocontrol of D. suzukii.


Author(s):  
Ricardo Alberto Toledo-Hernández ◽  
Fernando Martínez ◽  
María De Lourdes Ramírez-Ahuja ◽  
Arturo Sánchez ◽  
Douglas Rodríguez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Biganski ◽  
Sabrina Fückel ◽  
Johannes A. Jehle ◽  
Regina G. Kleespies

AbstractMicrosporidian infections of insects are important natural constraints of population growth, often reducing lifespan, fecundity and fertility of the infected host. The recently discovered Tubulinosema suzukii infects Drosophila suzukii (spotted wing drosophila, SWD), an invasive pest of many fruit crops in North America and Europe. In laboratory tests, fitness effects on larval and adult stages were explored. High level infection after larval treatment caused up to 70% pupal mortality, a decreased lifespan and a 70% reduced oviposition of emerging adults in biparental infection clusters. A shift to higher proportion of female offspring compared to controls suggested a potential parthenogenetic effect after microsporidian infection. A clear sex-linkage of effects was noted; females were specifically impaired, as concluded from fecundity tests with only infected female parents. Additive effects were noted when both parental sexes were infected, whereas least effects were found with only infected male parents, though survival of males was most negatively affected if they were fed with T. suzukii spores in the adult stage. Although most negative effects on fitness parameters were revealed after larval treatment, infection of offspring was never higher than 4%, suggesting limited vertical transmission. For that reason, a self-reliant spread in natural SWD populations would probably only occur by spore release from cadavers or frass.


2012 ◽  
Vol 3 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Hannah J. Burrack ◽  
J. Powell Smith ◽  
Douglas G. Pfeiffer ◽  
Glen Koeher ◽  
Joseph Laforest

2020 ◽  
Vol 152 (4) ◽  
pp. 432-449
Author(s):  
William Champagne-Cauchon ◽  
Jean-Frédéric Guay ◽  
Valérie Fournier ◽  
Conrad Cloutier

AbstractDrosophila suzukii (Matsumura) (Diptera: Drosophilidae), the spotted-wing drosophila, is an invasive pest of fruit crops, which appeared in eastern Canada in 2010. It represents a major threat to lowbush blueberry (Vaccinium angustifolium Aiton; Ericaceae) in the Saguenay-Lac-Saint-Jean region, Québec, Canada, at the northern limits of its distribution. The dynamics, overwintering capacity, population fluctuations, and damage to lowbush blueberry of D. suzukii are unknown in Saguenay-Lac-Saint-Jean. We aimed to 1) document D. suzukii abundance and phenology in lowbush blueberry in separate localities; 2) evaluate the potential of D. suzukii to overwinter and examine population dynamics over three seasons; and 3) study the spatial distribution of D. suzukii in lowbush blueberry fields with respect to forested borders. Drosophila suzukii is abundant in lowbush blueberry fields of Saguenay-Lac-Saint-Jean. In spring, D. suzukii were absent until late June, when few summer-morph females appeared. Drosophila suzukii densities started to increase regularly in August, with increasing male proportions, to culminate in fall at high levels with balanced sex ratios. Overwintering remains uncertain, D. suzukii being undetectable in spring despite intensive trapping. Appearance of diapausing winter morphs at high densities indicates that D. suzukii responds appropriately to local conditions preceding cold winter. Models of variation of D. suzukii densities and lowbush blueberry fruit infestation with distance from borders indicate that forest borders are favoured habitats over lowbush blueberry fields and the source of D. suzukii moving to some extent into lowbush blueberry fields.


2017 ◽  
Author(s):  
Nathan C. Medd ◽  
Simon Fellous ◽  
Fergal M. Waldron ◽  
Anne Xuéreb ◽  
Madoka Nakai ◽  
...  

AbstractDrosophila suzukii (Matsumura) is one of the most damaging and costly pests to invade temperate horticultural regions in recent history. Conventional control of this pest is challenging, and an environmentally benign microbial biopesticide is highly desirable. A thorough exploration of the pathogens infecting this pest is not only the first step on the road to the development of an effective biopesticide, but also provides a valuable comparative dataset for the study of viruses in the model family Drosophilidae. Here we use a metatransciptomic approach to identify viruses infecting this fly in both its native (Japanese) and invasive (British and French) ranges. We describe 18 new RNA viruses, including members of the Picornavirales, Mononegavirales, Bunyavirales, Chuviruses, Nodaviridae, Tombusviridae, Reoviridae, and Nidovirales, and discuss their phylogenetic relationships with previously known viruses. We also detect 18 previously described viruses of other Drosophila species that appear to be associated with D. suzukii in the wild.


Author(s):  
Sandeep Singh ◽  
Juan Huang ◽  
Matthew J Grieshop

Abstract Spotted-wing drosophila (Drosophila suzukii, (Matsumura)) is an invasive vinegar fly that has become a serious threat to soft fruit crops. Monitoring for this pest is typically performed using drowning traps baited with live yeast cultures or fermentation volatile blends. Trapping programs using these compounds provide highly variable results across production systems, geographic regions, and growing seasons. Trap competition with fruit is one hypothesis for this inconsistency. This study evaluated the trapping efficiency of yeast and wine baits in the presence and absence of small quantities of host fruits in two binary-choice laboratory experiments. The first experiment evaluated trap capture in clear 946-ml traps with easily accessible water, apple pomace, blueberry, raspberry, strawberry, cherry, or grape as competitive influences. The second experiment evaluated the same competitors, but they were made less accessible. Recapture of flies in arenas containing competitive fruit was reduced by 64–88% when fruit was ‘accessible’ and from 0 to 51% when it was ‘inaccessible’ compared with arenas containing a water competitor. All fruit types provided statistically similar levels of trap interference. In the first experiment, yeast captured more flies compared with wine, whereas in the second experiment, wine captured more flies than yeast. Our results support the hypothesis that the presence of fruit or other reproductive resources will reduce trap captures and that this reduction is likely mediated by the relative accessibility of the fruit versus the trap. Thus, attempts to develop population estimates based on traps should incorporate fruit availability/accessibility.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Nathan C Medd ◽  
Simon Fellous ◽  
Fergal M Waldron ◽  
Anne Xuéreb ◽  
Madoka Nakai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document